
Doctoral School in
Information and Communication Technology

Embedded Real-time Deep
Learning for a Smart Guitar

A Case Study on Expressive Guitar
Technique Recognition

Domenico Stefani

Advisor
Prof. Luca Turchet
Università di Trento

September 2023

“What can this strange device be?
When I touch it, it gives forth a sound
It’s got wires that vibrate and give music
What can this thing be that I found?

See how it sings like a sad heart
And joyously screams out its pain
Sounds that build high like a mountain
Or notes that fall gently like rain”

- Peart, Lee, Lifeson - 2112

Abstract

Smart musical instruments are an emerging class of digital musical instruments designed for mu-
sic creation in an interconnected Internet of Musical Things scenario. These instruments aim to
integrate embedded computation, real-time feature extraction, gesture acquisition, and networked
communication technologies. As embedded computers become more capable and new embedded
audio platforms are developed, new avenues for real-time embedded gesture acquisition open up.
Expressive guitar technique recognition is the task of detecting notes and classifying the playing
techniques used by the musician on the instrument. Real-time recognition of expressive guitar tech-
niques in a smart guitar would allow players to control sound synthesis or to wirelessly interact
with a wide range of interconnected devices and stage equipment during performance. Despite ex-
pressive guitar technique recognition being a well-researched topic in the field of Music Information
Retrieval, the creation of a lightweight real-time recognition system that can be deployed on an
embedded platform still remains an open problem.

In this thesis, expressive guitar technique recognition is investigated by focusing on real-time
execution, and the execution of deep learning inference on resource-constrained embedded com-
puters. Initial efforts have focused on clearly defining the challenges of embedded real-time music
information retrieval, and on the creation of a first, fully embedded, real-time expressive guitar
technique recognition system. The insight gained, led to the refinement of the various steps of the
proposed recognition pipeline. As a first refinement step, a novel procedure for the optimization
of onset detectors was developed. The proposed procedure adopts an evolutionary algorithm to
find parameter configurations that are optimal both in terms of detection accuracy and latency. A
subsequent study is devoted to shedding light on the performance of generic deep learning inference
engines for embedded real-time audio classification. This consisted of a comparison of four common
inferencing libraries, which focus on the applicability of each library to real-time audio inference,
and their performance in terms of execution time and several additional metrics. Different insights
from these studies supported the development of a new expressive guitar technique classifier, which
is accompanied by an in-depth analysis of different aspects of the recognition problem. Finally, the
experience collected during these studies culminated in the definition of a procedure to deploy deep
learning inference to a prominent embedded platform.

These investigations have been shown to improve the state-of-the-art by proposing approaches
that surpass previous alternatives and providing new knowledge on problems and tools that can aid
the creation of a smart guitar. The new knowledge provided was also adopted for embedded audio
tasks that differ from real-time expressive guitar technique recognition.

i

Keywords

Music Information Retrieval, Embedded Audio, Deep Learning Inference, Real-time
Audio, Smart Musical Instruments.

ii

Acknowledgements

First and foremost, I would like to acknowledge the invaluable help of my supervisor, Luca Turchet.
I would like to thank him for introducing me to the wonderful world of music technology research,
which is still magical to me. Had it not been for him, I would be working or doing research on
something that now, in comparison, seems boring, theoretical, and worlds away. I would also like
to thank Luca for his sound advice, and for granting me the freedom to focus on the topics that I
found the most interesting. A huge thanks to everyone at Elk Audio for the great OS that I had
the opportunity to use during my entire Ph.D. Thanks also to Johan for having me as a visiting
researcher at the Centre for Digital Music in London.

A huge thanks must go to my colleagues at the University of Trento: real friends who made these
last three years the most exciting and great period of my life. Thanks to Luca for the neverending
discussions on our many shared passions, and for being so excited about yours that you made them
become mine too. Thanks to Matteo for the lighthearted fun and joy you put into everything, the
deep discussions in the hardest moments of this period, and the great music too! Thanks to Nishal
for the big laughs, it would have been way more boring without you. Thanks to Alberto for the
wisdom: whether it was about research, life, or the most obscure music, you always had stories,
wise words, and suggestions that I cherished. Thanks to Mike for the good fun too, without you,
road trips and conferences would not have been as fun. Also thanks to Greg: despite arriving only
recently you have already been incredibly helpful, and I see our interactions are the same that are
between all the like-minded people here. Thanks also to everyone for putting up with me and my
quirks on a daily basis. A big thank also to the extended spippoling group, Ardan and Francy for
the late-night discussions, wisdom, and just plain fun.

Thanks also to all the great people I had the chance to meet at the Centre for Digital Music
in London. I am extremely grateful to: Aditya, Antonella, Nelly, Emilian, Keitaro, Marco, Andrea,
Christopher, Christian, Pedro, Jeff, Chin-Yun, Ivan, Adan, Bleiz, Carey, Elona, Vjosa, Rodrigo, Ines,
Ben, Ilaria, Jordie, David, Alex, Teresa, Monserrat, Yannis, Sara, Brendan, Ilias, Remi, Soumiya,
Franco, Lewis, Saurjya, Johan. Thanks for the feedback from a thousand perspectives that were
different than mine. Also thanks for taking me in as one of you! A very important thanks to Adi,
a friend who I already miss so much. You made my time in London so much better, and you were
a true friend in a temporary period when I never thought I would find one. Insanity is contagious.

Thanks also to all the special professors I had in high school and university; I would definitely
not be here without you. Many thanks also to my lifelong friends back home. Thanks for everything,
and for being great friends even in these three years that brought me physically further from you. A
big thanks also to my family back home and siblings around Italy and the world, for all the support.
Last but not least, I am profoundly grateful to Dani for all the patience, love, and support.
:=

iii

Contents

List of Tables xi

List of Figures xiii

Acronyms xv

1 Introduction 1
1.1 Motivation and aim . 1
1.2 Outcomes . 8

1.2.1 Publications . 8
1.2.2 Submitted Articles . 8
1.2.3 Demos and Talks . 9
1.2.4 Open-Source Software and Data 9
1.2.5 Articles in progress . 10

1.3 Thesis Structure . 11

2 Background and State Of The Art 13
2.1 Terminology . 14

2.1.1 Latency . 14
2.1.2 Soft and Hard Real-time . 15

2.2 Guitar Augmentations and Smart Musical Instruments 18
2.3 Expressive guitar playing technique recognition 24
2.4 Technology for real-time embedded audio deep learning 26

2.4.1 Embedded Audio Platforms 27
2.4.2 Deep learning Inference Engines for real-time Audio 28

v

Contents

2.5 Summary . 29

3 Challenges of Embedded Real-time Music Information Retrieval 31
3.1 Introduction . 32
3.2 Challenge 1: Availability of causal information only 33

3.2.1 Potential solutions . 34
3.3 Challenge 2: Tradeoff between accuracy and latency 35

3.3.1 Potential solutions . 36
3.4 Challenge 3: Processing deadlines and real-time-safe programming . . 37

3.4.1 Potential solutions . 38
3.5 Challenge 4: Embedded hardware and software limitations 41

3.5.1 Potential solutions . 42
3.6 Expressive Guitar Technique Classifier 43

3.6.1 Classification tasks . 45
3.6.2 Dataset . 45
3.6.3 Classification Pipeline . 47
3.6.4 Results and Discussion . 51

3.7 Summary . 59

4 Bio-inspired Optimization of Parametric Onset Detectors 61
4.1 Introduction . 62
4.2 Background . 64

4.2.1 The Aubio library . 64
4.2.2 Evolutionary Computation . 66

4.3 Proposed method . 67
4.3.1 Dataset Preparation . 68
4.3.2 Fitness Function . 69
4.3.3 Parameter Separation . 71
4.3.4 Evolutionary optimization for single-objective 73
4.3.5 Pareto Front Computation . 74
4.3.6 Solution Selection . 74

4.4 Evaluation and discussion . 78
4.4.1 Input data . 78
4.4.2 Evaluation algorithm . 78
4.4.3 Onset detector parameters . 79
4.4.4 Single-objective evolutionary optimization step 79

vi

Contents

4.4.5 Multi-Objective Optimization 84
4.4.6 Choosing a solution . 87

4.5 Summary . 90

5 Comparison of Deep Learning Inference Engines for Embedded Real-
time Audio Classification 93
5.1 Introduction . 94
5.2 Background . 96
5.3 Methodology . 98

5.3.1 Inference Engines . 99
5.3.2 Task . 100
5.3.3 Models . 101
5.3.4 Metrics . 102

5.4 Results and discussion . 105
5.4.1 Real-time safety . 105
5.4.2 Execution time . 106
5.4.3 Computational resources . 107
5.4.4 Model footprint . 109
5.4.5 Model-independent metrics . 109
5.4.6 Comparison Results and Key Takeaways 113

5.5 Summary . 118

6 Embedded Real-Time Expressive Guitar Technique Recognition 119
6.1 Introduction . 120
6.2 Experimental Setup and Motivation 121

6.2.1 Data . 121
6.2.2 Hardware and embedded implementation 123
6.2.3 Software . 123
6.2.4 Experiment 1: Accuracy and latency 127
6.2.5 Experiment 2: Generalization and Guitar/Player effect 131
6.2.6 Experiment 3: Specialization and Guitarist’s Touch 132

6.3 Results and Discussion . 133
6.3.1 Experiment 1: Accuracy and latency 133
6.3.2 Experiment 2: Generalization and Guitar/Player effect 134
6.3.3 Experiment 3: Specialization and Guitarist’s Touch 136

6.4 Summary . 139

vii

Contents

7 Real-Time Embedded Deep Learning on Elk Audio OS 141
7.1 Introduction . 142
7.2 Background . 144
7.3 Tools . 146

7.3.1 JUCE and VST . 146
7.3.2 Elk Audio OS . 146
7.3.3 Choice of Inference Engine . 147
7.3.4 Project Repository . 148

7.4 Deployment Procedure . 148
7.4.1 Project creation . 149
7.4.2 Cross-compilation for Elk Audio OS 150
7.4.3 Elk Audio OS on the Raspberry 154
7.4.4 DAW configuration: Sushi . 155
7.4.5 Diagnostic tools . 157

7.5 Considerations on real-time inference 161
7.6 Other Application and work in progress 165
7.7 Summary . 167

8 Conclusions 169
8.1 Challenges of Embedded Real-time Music Information Retrieval . . . 170
8.2 Bio-inspired Optimization of Parametric Onset Detectors 171
8.3 Comparison of Deep Learning Inference Engines for Embedded Real-

time Audio Classification . 172
8.4 Embedded Real-Time Expressive Guitar Technique Recognition . . . 173
8.5 Real-Time Embedded Deep Learning on Elk Audio OS 175
8.6 Concluding Remarks . 176

Bibliography 177

A Additional details 201
A.1 Aubio onset methods . 201

A.1.1 HFC Onset Detection Function 202
A.1.2 Complex Onset Detection Function 202
A.1.3 Phase Onset Detection Function 202
A.1.4 Spectral difference Onset Detection Function 202
A.1.5 Kullback-Liebler distance Onset Detection Function 202

viii

Contents

A.1.6 MKL Onset Detection Function 202
A.1.7 Spectral Flux Onset Detection Function 203

A.2 Inspyred operations . 203
A.2.1 Tournament Selection . 203
A.2.2 Arithmetic Crossover . 203
A.2.3 Laplace Crossover . 204
A.2.4 Generational Replacement . 204

A.3 Elk Audio OS - Deep Learning Guide 205

ix

Contents

x

List of Tables

2.1 Related works: guitar augmentations 23

3.1 Summary of the results of Task A. 54
3.2 Summary of the results of Task B. 54
3.3 Summary of the results of Task C. 55

4.1 Aubioonset parameters . 80
4.2 Evolutionary algorithm settings . 82
4.3 Best solutions for onset detector optimization 85
4.4 Table of the Pareto-optimal solutions between f1-score and IQR . . . 86

5.1 Combinations of inference engines and compatible models 103
5.2 CPU and RAM usage per model and inference engine 107
5.3 Model independent metrics . 109
5.4 Library size per inference engine . 110
5.5 Comparison of project histories between the 4 inference engines com-

pares (accessed on 29/12/2023). 113

6.1 Neural network parameters for each latency configuration 129

A.1 Aubio’s onset functions . 201

xi

List of Tables

xii

List of Figures

1.1 Overview of a system for the real-time recognition of expressive playing
techniques, and potential applications that repurpose the extracted
information in real-time. 5

2.1 Example latency PDFs . 16
2.2 Example of density estimation of two latency distributions 17
2.3 Boxplots of two latency distributions 18

3.1 Real-time execution flow of the classification pipeline 40
3.2 Hardware setup of the expressive technique classifier 44
3.3 Percussive areas . 47
3.4 Hand positioning for each technique 48
3.5 Expressive technique classification pipeline 49
3.6 Breakdown of the classification latency into its main components . . . 50
3.7 Confusion matrix for Task A. 52
3.8 Confusion matrix for Task B. 52
3.9 Confusion matrix for Task C. 53
3.10 Individual delay distributions . 58

4.1 Audacity spectrogram resolution . 70
4.2 Audacity waveform range . 71
4.3 Annotated onset example . 72
4.4 Pareto front example 1 . 76
4.5 Pareto front example 2 . 77
4.6 Proposed Evolutionary Algorithm . 83

xiii

List of Figures

4.7 Optimization jobs schedule . 84
4.8 F1-score Gain of proposed method vs manual tuning 84
4.9 Plot of the solutions according to f1-score and IQR 87
4.10 Pareto front between f1-score and IQR 88
4.11 Alternative Pareto front between f1-score and maximum latency . . . 89

5.1 Expressive guitar technique Classification pipeline. 100
5.2 Neural model’s architecture . 102
5.3 Execution time for each inference engine 114
5.4 Model size for each inference engine’s format 115
5.5 Spider chart of model-independent scores 116
5.6 Size of deep models and inference engines 117

6.1 Windowed feature extraction . 126
6.2 Classification network . 128
6.3 Breakdown of the components of the classifier’s latency 130
6.4 Recognition accuracy and latency for each configuration 135
6.5 Accuracy for each expressive technique across different latency config-

urations . 136
6.6 Accuracy with different number of guitar/player pairs in the dataset . 137
6.7 Accuracy on a single guitar and different players 138

7.1 Deep Learning deployment process on Elk Audio OS 160
7.2 Example of audio processing task safely executing in real-time 161
7.3 Example of processing task that exceeds its time budget. 162
7.4 Example of parallel audio processing tasks in real-time threads 162
7.5 Example of audio processing task on a separate thread 164
7.6 User-study for the embedded emotion recognition system, for a piano

player. 166
7.7 Example of emotion classification results for 3-second audio chunks

logged by the embedded recognition system. 166

A.1 Set of Linux shell commands to cross-compile TensorFlow Lite 205

xiv

Acronyms

Pd Pure Data. 9, 19, 20, 42, 49, 125

AI Artificial Intelligence. 144

AMI Augmented Musical Instrument. 13, 18, 20–22

BFCC Bark Frequency Cepstral Coefficient. 49, 51, 100, 125

BiRNN Bi-directional Recurrent Neural Network. 33, 34

CNN Convolutional Neural Network. 42, 56, 128

CSV Comma-separated values. 125

DAW Digital Audio Workstation. 22, 27, 144, 149, 150, 155, 160

DMI Digital Musical Instrument. 13, 31, 143

DSP Digital Signal Processing. 3, 20, 21, 28, 42, 143, 164

EC Evolutionary Computation. 63, 66–68, 71, 73, 74, 78, 80–85, 87, 91, 172

FFNN Feed-Forward Neural Network. 42, 54, 56, 60, 100, 101, 118, 171

FN False Negative. 70

FP False Positive. 70

FPGA Field Programmable Gate Array. 28, 42, 98

GPU Graphics Processing Unit. 41, 42, 95, 99, 147, 162

gRPC Google Remote Procedure Calls. 154

GUI graphical user interface. 150, 154, 155

xv

Acronyms

IE inference engine. 11, 29, 30, 41, 59, 60, 93–116, 118, 141, 143, 147, 148, 153, 162,
167, 172, 173, 175

IoMusT Internet of Musical Things. 4, 6, 21, 143, 147

IoT Internet of Things. 143, 147

IQR Interquartile Range. 85–87

KNN K-nearest neighbors. 36, 44

LSTM Long short-term memory. 96, 104, 110

MFCC Mel Frequency Cepstral Coefficient. 49, 100, 124, 125

MIR Music Information Retrieval. 4, 6, 11, 31–34, 36, 41, 59, 67, 124, 169, 170, 175

MKL Modified Kullback-Leibler. 65, 79, 85, 87

OD Onset Detection. 62–65, 67, 78, 79, 84, 85

OSC Open Sound Control. 154

PDF probability density function. 14, 15

RNN Recurrent Neural Network. 34, 56

RPI4 Raspberry PI4. 123

rtMIR real-time Music Information Retrieval. 32–39, 41–43

SBC Single-Board Computer. 26–28, 95, 144, 146, 151, 154

SGD Stochastic Gradient Descent. 50

SMI Smart Musical Instrument. 6, 7, 13, 21, 22, 27, 62, 63, 132, 141, 143

SSH Secure SHell. 154, 155

STFT Short-time Fourier transform. 34, 65, 151

TFLite TensorFlow Lite. 29, 41, 50, 58, 59, 93, 95, 97, 99, 103, 106, 109–113, 124,
125, 129

TP True Positive. 70

TPU Tensor Processing Unit. 41, 42, 95, 98, 99, 147

xvi

Acronyms

VPU Visual Processing Unit. 42

VST Virtual Studio Technology. 10, 21, 27, 125, 144, 146, 148–150, 155, 160, 167,
175

WSL the Windows Subsystem for Linux. 148

xvii

Acronyms

xviii

Chapter 1

Introduction

The topic of this thesis is real-time deep learning deployment on embedded computers
for the creation of a smart guitar, with a focus on expressive guitar technique recog-
nition. This chapter explains the motivations and aim of this work (Section 1.1).
Additionally, the main contributions and outcomes of this work are presented in Sec-
tion 1.2, which includes the publications associated with the thesis (Section 1.2.1),
submitted articles (Section 1.2.2), demos and talks relative to this thesis work (Sec-
tion 1.2.3), open source software and free dataset delivered (Section 1.2.4), and two
articles in progress (Section 1.2.5). Finally, the structure of the thesis is provided in
Section 1.3.

1.1 Motivation and aim

Guitar and technology

Throughout history, the guitar has undergone vast changes and transformations, as
luthiers, and then engineers, applied the technology of their time to the instrument.
While this holds true since the inception of stringed instruments for the improvements
in choices of body material, string types, glues, and shapes, one of the most drastic
transformations affected the guitar in the 1930s, when it was mated with electronic
pickups. Not many decades later, in the 1960s, people started exploring distortion

1

1.1. Motivation and aim

and other effects that could be obtained by manipulating the guitar’s signal with
electronics. This experimentation fostered the creation of a wide range of effects for
the instrument, in the form of pedals and similar devices [1].

However, it was with the gain in popularity of electronic synthesizers, that musi-
cians experienced a new wealth of otherworldly musical sounds. While the keyboard
started becoming the default controller for synthesizers, guitarists and engineers en-
visioned the possibility of using the guitar as a controller, giving guitarists the ability
to play the very same synthetic sounds, with the convenience of using the gestures
and the instruments they were most familiar with.

Guitar synthesizers and other guitar controllers

This concept, referred to as the guitar synthesizer, dates back to the late 1970s when
commercial products such as the Roland GR-500 [2], Arp Avatar [3], 360 Systems
Spectre [4], and the Jen GS-3000 Syntar [5] were created. These devices added to the
sonic potential of the instrument by allowing the guitarist to control a synthesizer in
real-time. To do so, these systems tracked the pitch and amplitude throughout time
(i.e., envelope) of the notes played on the guitar. In particular, these adopted special
hexaphonic pickups, which capture an individual signal for each string, granting a
higher performance in tracking polyphonic gestures with respect to trackers that oper-
ate on a single polyphonic signal. However, because of the limited signal-processing
technology available at the time, most of the commercial products of those years
were rather slow and inaccurate at tracking the player’s actions [6]. As a result, these
systems were not adopted by many guitarists1, with some notable exceptions (e.g.,
Steve Hackett with the Roland GR-500 [7], Pat Metheny and King Crimson’s Robert
Fripp [8] with the Roland G303 guitar and GR-300 guitar synthesizer processor).

In the following decades, most of the products focusing on the use of the guitar as
a controller resorted to using buttons or sensors underneath the fretboard to capture
the left-hand position, and a pickup or other types of mechanical transducers to track
which string was plucked and with which intensity. Some went as far as adopting
plastic for the entire construction of these controllers and replaced strings with low-
tension plastic cables, such as the Casio DG-10 and SynthAxe [9]. Others, such
as the Starr Labs’ Ztar, featured a fretboard covered in buttons, replacing entirely
the strings. Sensor-equipped controllers allowed musical instrument companies to

1Notably, many of these guitar synthesizers were modified by users to be controlled by a keyboard,
first via control voltages, and later with the MIDI protocol.

2

Chapter 1. Introduction

overcome the limitations of real-guitar tracking that were due to the limited signal
processing capabilities of the time, but they resulted in instruments rather different
from guitars [10]. In particular, most of these controllers required players to use
different gestures, actions, and forces from those that would have been used on a
regular guitar. While these enhanced the possibility of the guitar as an interface, it
can be argued that there is still a place for actual guitars as a controller of synthetic
sounds.

Companies such as Roland kept producing and improving guitar synthesizers
throughout the years, resulting in improvements in the quality of the pitch and ampli-
tude tracking systems thanks to Digital Signal Processing (DSP). To date, the com-
pany Boss, which is part of the Roland Corporation, still produces guitar synthesizers
such as the GP-10, GR-55, and SY-1000 pedalboards, along with their GK-3 and GK-
5 hexaphonic pickups. Moreover, companies such as Godin produce guitars with a
hexaphonic pickup integrated into the design, and Roland/Boss-compatible connec-
tors. Other examples of guitar controller technology are represented by compact
audio-to-midi converters and pickup systems such as the Sonuus G2M [11] converter
and the Fishman TiplePlay systems [12]. Additionally, reportedly state-of-the-art
tracking accuracy is achieved by MIDI software trackers such as Jam Origin MIDI
Guitar 1 and 2 [13].

An expressive bottleneck

Despite the improvements made throughout the years in guitar synthesizers, conven-
tional note tracking does not take into account the wide range of expressive nuances
used by guitarists to shape the sound of their instruments. These differences in the
timbre of guitar sounds are introduced through the use of different expressive tech-
niques, which range from changing the point where strings are plucked, to bending
or muting the strings. The use of different techniques influences the timbre of the
notes, which is defined as the perceived quality of a sound. Timbre is determined by
the spectral content and envelope of notes (i.e., how the sound changes over time).
Therefore, expressive techniques that are not based solely on pitch and loudness varia-
tions cannot be tracked with conventional note-tracking systems. For instance, while
pitch-based techniques such as bending or vibrato, and envelope-based techniques
(e.g., staccato) will be detected as a change in pitch or amplitude, other techniques
such as palm muting or harmonics will not be tracked. As a consequence, the output
sound cannot be controlled through the use of these techniques. For this reason,

3

1.1. Motivation and aim

these tracking systems represent a bottleneck between the expressive playing on the
musician’s part and the synthesizer’s sound [14]. To affect characteristics of the syn-
thesizer’s sound other than pitch and amplitude, current guitar synthesizers require
players to use rather unnatural interaction patterns, such as interaction with buttons
or knobs on the synthesizer interface [15].

However, real-time recognition of expressive techniques on the guitar would allow
for a more accurate description of the guitarist’s playing, which can be repurposed
in real-time to shape the synthesizer’s sound.

Expressive technique recognition

Expressive technique recognition has been a topic of interest in the field of Music
Information Retrieval (MIR) [16] for many years, and it has been studied for several
applications such as enhanced automatic music transcription [17, 18] and analysis of
music performances [19, 20]. Compared to pitch tracking, technique recognition re-
quires a deeper analysis of the frequency spectrum and temporal evolution of sounds.
Additionally, research on instrument playing technique recognition often focuses on
offline algorithms that can benefit from the availability of entire signal recordings and
a lack of tight deadlines for recognition. The access to large windows of the audio
signal is extremely helpful, as some high-level properties such as specific expressive
techniques develop in a very clear and distinctive way only at the late phase of a note
(i.e., hundreds of milliseconds after the attack) [20].

Differently from the offline case, real-time expressive technique recognition re-
quires algorithms that can produce classification results in as little time as possible.
When the technique recognition information is repurposed to produce or shape a new
synthetic sound, the latency between the beginning of the note (i.e., note onset) and
that of the new sound must be as low as 30 ms or smaller for the two to be perceived as
simultaneous by the human hearing system [21]. A larger time discrepancy between
the musician’s actions and the reaction of such a system will affect their ability to
follow their own rhythm. As a result, real-time recognition is particularly challenging
as many data preprocessing techniques cannot be applied, and future inputs cannot
be seen without adding latency between sound events and the recognition results.
In addition to the immediate generation of synthetic sounds, a wide range of less
latency-demanding applications can be devised for a guitar controller within the In-
ternet of Musical Things (IoMusT) paradigm [22]: the playing technique information
extracted in real-time can be repurposed to wirelessly trigger stage lighting effects,

4

Chapter 1. Introduction

Onset
Detector

Feature
Extractors

Embedded Computer

Visuals Stage LightingAudio

Oscillator Filter Amplifier

Envelope

A D S R

Modulation

Real-time Applications

Figure 1.1: Overview of a system for the real-time recognition of expressive playing
techniques, and potential applications that repurpose the extracted information in real-
time.

control fog machines, or manipulate visuals that accompany the guitarist’s perfor-
mance in real-time. With such a system, using a specific expressive technique can
generate a response through one or more of these media. This concept departs from
the idea of an improved guitar synthesizer, which only served as a first inspiration
for this thesis work, and embraces a broader pool of possibilities. Figure 1.1 shows
an overview of the proposed real-time recognition system with some of the potential
applications.

Real-time expressive technique recognition poses a series of additional complex-
ities in contrast to the offline case, which derives from the need for low latency de-
tection. In particular, while modern deep learning approaches have proved accurate
for expressive technique recognition, offline approaches may not always be applicable
to real-time execution. Such cases require either a redesign of the offline solutions or
clever optimization of the deep learning models and optimization.

Embedded intelligence and Smart musical instruments

In order to integrate such a system into a guitar synthesizer, however, it needs to
be able to run on a compact embedded computer, while still maintaining the latency

5

1.1. Motivation and aim

guarantees required for real-time use. Embedded execution adds additional com-
plexity to the development of real-time audio recognition and analysis systems since
embedded devices and single-board computers offer limited computing power in com-
parison to personal computers. However, recent years have witnessed the availability
of increasingly powerful single-board computers and embedded platforms specifically
targeting audio and musical applications (e.g., Bela [23] and Elk Audio OS [24]).

By focusing on embedded real-time execution, we situate our work in the con-
text of Smart Musical Instruments (SMIs), which is a family of Internet of Musical
Things (IoMusT) devices that are “characterized by sensors, actuators, embedded
intelligence, and wireless connectivity to local networks and to the Internet” [25]. In
this context, embedded intelligence has been defined as the integration of embedded
computation and the real-time extraction of features and sound properties from the
sound signal, along with context-awareness and proactivity capabilities. In particu-
lar, expressive guitar-playing techniques represent a rather high-level feature of each
sound played on the instrument, and enabling their real-time recognition on compact
embedded computers will enable researchers to investigate further applications that
harness the interconnected nature of Smart Musical Instruments. Furthermore, in-
vestigating the technical solutions for deep learning execution for real-time analysis
on embedded audio platforms can help foster the creation of new audio devices and
Smart Musical Instruments. However, when this Ph.D. started (November 2020), the
state-of-the-art of embedded real-time deep-learning approaches to MIR was scarce.

Research gap and aim

At the beginning of this research, we were faced with the absence of studies doc-
umenting the real-time execution of deep-learning inference for audio on embedded
devices. Conversely, deep-learning approaches had become prominent for many MIR
tasks, including expressive guitar technique recognition. Moreover, we found how
online/real-time execution was quite rarely a constraint or metric adopted in guitar
technique recognition studies, making it complicated to parse studies on the topic.
These gaps acted as obstacles in the development of a smart guitar as we envisioned
it, but we soon realized how their impact had broader implications on smart musical
instruments, and deep-learning-equipped audio devices in general.

The aim of this work is to address technical challenges in the real-time execution
of deep-learning models on embedded computers for music applications. Moreover,
we adopted the guitar as a case study, focusing on aiding the development of a smart

6

Chapter 1. Introduction

guitar through an approach for embedded real-time expressive guitar technique recog-
nition. Furthermore, we aimed to address the technical challenges in the deployment
of deep-learning-based recognition pipelines on embedded computers for music ap-
plications. While we focused on the guitar as a case study, the technical challenges
addressed have broader implications that can apply to a wider range of musical instru-
ments, given that proper data is provided. In particular, we focus on the optimization
of existing onset detectors for real-time applications, with both accuracy and latency
as optimization objectives. Additionally, we investigate the current tools for the exe-
cution of deep learning models in real-time on embedded audio platforms. Finally, we
aim to aid the deployment of neural networks to embedded audio platforms through
the development of open-source software and the creation of detailed guides. In par-
ticular, we focused on the open-source real-time Elk Audio operating system. We
aimed to extend the implications of this doctoral research besides SMIs, helping the
development of deep-learning-equipped audio devices in general.

7

1.2. Outcomes

1.2 Outcomes

1.2.1 Publications

The doctoral research presented in this thesis has resulted in the following scientific
publications:

[i] Domenico Stefani and Luca Turchet. Bio-Inspired Optimization of Parametric
Onset Detectors. In Proceedings of the 24th International Conference on Digital
Audio Effects (DAFx20in21), volume 2, pages 268-275, Sept. 2021;

[ii] Domenico Stefani and Luca Turchet. On the Challenges of Embedded Real-
Time Music Information Retrieval. In Proceedings of the 25-th International
Conference on Digital Audio Effects (DAFx20in22), volume 3, pages 177-184,
Sept. 2022;

[iii] Domenico Stefani, Simone Peroni, and Luca Turchet. A Comparison of Deep
Learning Inference Engines for Embedded Real-Time Audio Classification. In
Proceedings of the 25-th International Conference on Digital Audio Effects
(DAFx20in22), volume 3, pages 256-263, Sept. 2022;

[iv] Domenico Stefani. Riconoscimento in tempo reale di tecniche espressive per
chitarra su embedded computers. In Corpi Fisici | Physical Bodies, Atti del
XXIII Colloquio di Informatica Musicale. AIMI - Associazione Informatica
Musicale Italiana, DADI - Dip. Arti e Design Industriale. Università IUAV di
Venezia, 2023;

[v] Domenico Stefani and Luca Turchet. Real-Time Embedded Deep Learning on
Elk Audio OS. In Proceedings of the 4th International Symposium on the In-
ternet of Sounds (IS2), Oct. 2023, Pisa, Italy.

1.2.2 Submitted Articles

[vi] Domenico Stefani and Luca Turchet. Embedded Real-Time Expressive Gui-
tar Technique Recognition Submitted to IEEE/ACM Transactions on Audio,
Speech, and Language Processing.

8

Chapter 1. Introduction

1.2.3 Demos and Talks

This research was presented with the following demos and workshop talks:

1. Domenico Stefani. Demo of the timbreid-vst plugin for embedded real-time clas-
sification of individual musical instrument timbres. In 27th Conference of Open
Innovations Association (FRUCT), volume 2, pages 412-413, 2020;

2. Domenico Stefani. Embedded Real-time Expressive Guitar Technique Recogni-
tion In Embedded AI for NIME Workshop [26], International Conference on
New Interfaces for Musical Expression, Jun. 2022;

3. Domenico Stefani. Demo: Real-Time Embedded Deep Learning on Elk Audio
OS. In International Symposium on the Internet of Sounds (IS2), Oct. 2023,
Pisa, Italy.

1.2.4 Open-Source Software and Data

Part of the output of this research work is in the form of software that was released
as open-source. The following is a list of the main pieces of software delivered, along
with the links to the relative online repositories:

• C++ TimbreID library:
Port of sixteen Pure Data (Pd) objects from the Timbre ID external [27] to the
C++ language with the JUCE Framework. The library includes the expressive
guitar technique recognition plugin described in Chapter 6 and a feature ex-
traction plugin. The code has been developed solely by myself, based on the
original Pd code for the library.
https://github.com/CIMIL/cpp-timbreID

• Deep inference wrappers:
Library wrappers for classification with four different deep inference wrappers.
The code has been developed by myself and Simone Peroni.
https://github.com/CIMIL/cpp-deep-inference-wrappers

• Guide for Deep Learning deployment on Embedded Computers with
Elk Audio OS:
Templates, example projects, and an in-depth stepwise guide to deploying deep

9

https://github.com/CIMIL/cpp-timbreID
https://github.com/CIMIL/cpp-deep-inference-wrappers

1.2. Outcomes

learning inference Virtual Studio Technology (VST) plugins to embedded com-
puters with Elk Audio OS. The code has been developed solely by myself.
https://github.com/CIMIL/elk-audio-AI-tutorial

Furthermore, due to the absence of free datasets with high-quality monophonic
recordings of acoustic guitar techniques (both pitched and percussive, captured with
internal pickups), an extensive audio dataset was recorded, edited, labeled, and made
freely available [28]. The Acoustic Guitar Playing Technique dataset (AGPTset)
contains 15 hours and 55 minutes of monophonic recordings of 12 expressive guitar
playing techniques (pitched and percussive). Of these, 10 hours and 4 minutes of
recordings encompassing 8 of the 12 techniques have been labeled, meaning that
onsets were identified at the millisecond level and their timestamp was annotated
alongside playing technique information. The precision of the annotations of each
onset is a property not often found in music datasets. As a result, 32,592 individual
notes have been labeled. Recordings cover 6 guitar players on 7 different acoustic
steel-string guitars.

• Domenico Stefani and Luca Turchet. AGPTset (Acoustic Guitar Playing Tech-
nique dataset).
https://doi.org/10.5281/zenodo.10159491

1.2.5 Articles in progress

The work done during the 6-months research period spent at the Centre for Digital
Music (C4DM) at the Queen Mary University of London culminated in the devel-
opment of an offline embedded classifier for intended emotion from guitar and piano
improvisation excerpts. The system is in its user-study stage, and it has been tested
with three guitarists and one piano player. Additionally, the development of a real-
time version of the embedded classification system, based on the offline method, is
underway.

• Luca Turchet, Domenico Stefani, and Johan Pauwels. Emotionally-aware Smart
Musical Instruments to be submitted to IEEE Transactions on Affective Com-
puting;

• Domenico Stefani, Johan Pauwels Luca Turchet. Real-time Emotion Recogni-
tion on Smart Musical Instruments TBD;

10

https://github.com/CIMIL/elk-audio-AI-tutorial
https://doi.org/10.5281/zenodo.10159491

Chapter 1. Introduction

1.3 Thesis Structure

This thesis is structured as follows:

Chapter 2 provides the background of the thesis research and a review of the state
of the art previous to our contribution.

Chapter 3 presents an overview of the challenges of embedded real-time MIR, along
with potential solutions or tradeoffs. Some of the approaches and solutions presented
are demonstrated with the implementation of an embedded real-time classifier of
expressive guitar techniques. Reflections on the limitations of the classifier presented
shaped the subsequent research direction, and therefore the content of the following
chapters.

Chapter 4 presents a new approach to the optimization of parametric onset detec-
tors for both accuracy and low latency, using evolutionary algorithms.

Chapter 5 describes a comparison of four inference engines (IEs) for the execu-
tion of deep learning models on embedded computers. The comparison focuses on
assessing whether the available generic IEs are suitable for real-time execution for au-
dio, and how their performance differs in terms of execution time on a classification
problem. Furthermore, we ranked the four IEs according to six additional metrics,
including resource utilization, ease of use, and quality of documentation.

Chapter 6 then builds on the works described in the previous chapters and presents
a flexible-latency approach to embedded real-time expressive guitar technique recog-
nition. The chapter delves into the problem of playing technique recognition in real-
time for guitar. Here we also provide a classifier that is based on the idea that was
presented in Chapter 3 as an example, which was widely improved and revised here.

Chapter 7 draws from experience collected during the previously mentioned works,
and presents a guide to deep learning deployment for audio on embedded systems
using Elk Audio OS. Differently from previous work, the guide is not only targeted at
running MIR for classification on embedded computers, but it extends more broadly
to the use of neural networks for audio (e.g., for audio effect modeling).

Chapter 8 concludes the thesis, summarizing the contributions of this work, and
showing how this thesis improved the state-of-the-art presented in Chapter 2.

11

1.3. Thesis Structure

12

Chapter 2

Background and State Of The Art

The focus of this thesis is on the development of technologies that can aid the cre-
ation of a smart guitar [29], which can be defined as an example of an SMI. Smart
Musical Instruments have been defined by Turchet et al. [30] as musical instruments
“characterized by sensors, actuators, embedded intelligence, and wireless connectiv-
ity to local networks and to the Internet” [25]. These can be described as Digital
Musical Instruments (DMIs) [31] with a strong focus on the self-contained nature of
the instruments and their networking capabilities. Despite the very peculiar com-
bination of features that define SMIs, their definition leaves space to overlap with
that of Augmented Musical Instruments (AMIs) [31] (or instrument augmentations).
Their definition will be presented later in this chapter, along with relevant guitar
augmentation studies (Section 2.2).

As previously described, SMIs are complex instruments composed of input sensory
stages, embedded processing capabilities, actuator technology, and network connec-
tivity. In particular, we focus on the part of a smart guitar that manages the real-time
extraction of audio features to capture musical gestures.

The musical gestures of interest for this work are expressive playing techniques. In
the past, the study of physical gestures has led to different definitions and distinctions
[32–35]. Expressive playing techniques fall under definitions of musical gestures such
as that adopted by Miranda et al. [31].

Automatic recognition of expressive playing techniques has been investigated for

13

2.1. Terminology

many instruments, including guitar, and in both offline and real-time contexts. An
overview of the most relevant works is presented in Section 2.3. Furthermore, Sec-
tion 2.4 will discuss the state of the technology for real-time audio analysis on em-
bedded computers. Finally, Section 2.5 will situate the current work in the state of
the art, drawing a summary of the chapter.

2.1 Terminology

2.1.1 Latency

The latency of a system can be defined as the delay introduced by the system itself
between its input and the output results produced. Additionally, we often conceptu-
ally split larger systems into smaller blocks: we can therefore define several latencies
(e.g., latency of detection, latency of classification), which sum to a total latency.
However, it is very important to note that the total latency of a digital processing
system is dictated by a large number of hardware and software factors and it can
rapidly vary, therefore latency cannot be identified as a single number. Instead, we
must refer to system latency with measurements about its distribution, e.g., average
latency, worst-case latency (maximum latency), latency variability (variance, stan-
dard deviation, Inter-quartile range), and ultimately its probability density function
(PDF) or density estimation from measurements.

Moreover, jitter is the variation within the latency of a system, indicating the
degree of inconsistency of the latency itself. Jitter is a relevant characteristic of
audio systems as it has been proven to affect human perception when larger than
tolerable constraints [36].

For an example of the latency components of a digital audio system, we can
take an audio processing software running on a personal computer as a system. In
this case, we can identify latency as the delay between any one instant in the input
audio signal and the relative instant in the output (processed) signal. In the example
case, part of the total delay of the system is to be attributed to the analog-to-
digital and digital-to-analog conversion stages. Additionally, digital audio processing
is commonly performed by collecting buffers of audio samples and processing them
in batches. The size of the input and output audio buffers, and therefore latency
introduced by the buffers, is often a parameter choice left to the user. In modern
PCs, audio is delivered to programs by the operating system, which can introduce

14

Chapter 2. Background and State Of The Art

more or less delay depending on the nature of the audio drivers used. Additionally,
when looking at the sole audio processing software, latency can be introduced both
by the nature of the processing performed, and the actual processing computation to
be performed on the CPU. Such an example can also show how latency cannot be a
single value, as the operating system would be handling multiple tasks at any time
and different calls to the audio processing routine must share computing resources
with other processes. This may cause the system to take more time to complete some
processing calls, therefore potentially introducing jitter.

In the chapters of this thesis that discuss expressive guitar technique recognition,
we will define recognition latency as the delay between the onset of a note in the
audio signal and the moment when the relative recognition result, i.e., the predicted
expressive technique, is reported.

Figure 2.1, Figure 2.1, and Figure 2.1 show a toy example with two systems and
a hard tolerability threshold on latency. Figure 2.1 represents the two PDFs where
System A has a higher mean but contained variance (bell width), while System B
has a lower latency mean but higher variance, which makes it not compliant with the
set deadline. Figure 2.1 shows an estimation of the latency distributions obtained
from measurements and displayed with histograms. Finally, Figure 2.3 presents an
alternative representation of the two systems with latency observations as boxplots,
along with their mean and standard deviation values.

2.1.2 Soft and Hard Real-time

Real-time computing refers to hardware and software systems that are subject to a
real-time constraint, which requires them to guarantee a response within specified
time constraints, often referred to as deadlines. This concept is essential in various
applications where safety or human perception is involved.

Real-time systems are categorized as either soft real-time systems or hard real-time
systems based on their timing constraints. In real-time computing, hard real-time
systems must meet strict timing constraints, and missing a deadline can have seri-
ous consequences. On the other hand, soft real-time systems can tolerate occasional
missed deadlines, which may degrade the system’s performance but are not catas-
trophic. This distinction is relevant to audio processing systems, as hard real-time
requirements are critical in applications such as live sound processing, where any
delay in processing the audio data can be perceptible and disruptive. In contrast,
soft real-time constraints may be acceptable in non-critical audio applications, where

15

2.1. Terminology

0 5 10 15 20 25 30 35 40
Latency [ms]

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40
Pr

ob
ab

ilit
y

System A
System B

Figure 2.1: Example of the latency PDF of two different systems and a set tolerability
threshold (red line). Despite System B having a lower mean latency, jitter makes it
so that it does not comply with the tolerability threshold on some occasions. On the
contrary, System A has a higher mean but more contained jitter and can be more
suitable for a case where the red line represents a hard deadline.

occasional delays in processing may be tolerated without significant impact on the
overall system performance.

The concepts of hard and soft real-time are therefore tightly related to the con-
cepts of latency, jitter, their potential degree of tolerability, and the risk associated
with missing deadlines. As previously mentioned, anything that produces audio sam-
ples in the processing routine of a digital audio system is subject to hard real-time
constraints, as missing even a single audio deadline will lead to a significant degra-
dation in system performance by causing audible audio artifacts. On the contrary,
tasks such as reading control values (e.g., virtual potentiometers on audio processing
software) have a much more limited impact on the system performance, therefore
missing a “control” deadline is not a critical event, and often some degree of jitter can
be tolerated, especially when it happens sporadically (soft real-time constraints).

The chapters of this thesis that discuss expressive guitar technique recognition
present examples of soft real-time constraints on a recognition deadline, where the
recognition result is envisioned to be used as a control parameter for eventual audio
processing or generation algorithms. Therefore, missing a recognition deadline does

16

Chapter 2. Background and State Of The Art

0 5 10 15 20 25 30 35 40
Latency [ms]

0.0

0.1

0.2

0.3

0.4

0.5

Fr
eq

ue
nc

y

Figure 2.2: Estimation of the distribution density of the latency of the systems in
Figure 2.1.

not have a catastrophic effect on the performance of the system.

17

2.2. Guitar Augmentations and Smart Musical Instruments

0 5 10 15 20 25 30 35 40
Latency [ms]

System A

System B

Mean: 16.0ms
Stdev: 1.0ms

Mean: 14.0ms
Stdev: 4.0ms

Figure 2.3: Alternative representation of the two latency distributions from Figure 2.1
with boxplots.

2.2 Guitar Augmentations and Smart Musical

Instruments

AMIs have been defined as conventional (i.e., acoustic or electric) musical instruments
that have been fitted with several sensors to provide the player with more control
over the sound produced by the instrument [31]. AMIs have often been referred to
as hyperinstruments or hybrid instruments [37, 38]. However, the term Augmented
Musical Instrument has also been used to refer to the use of actuators [39] to act on
the resonant surfaces of the instrument. Despite the existence of these two augmen-
tation categories, i.e., augmentation “by sensors and by actuators” [40], this thesis
work mostly overlaps with the first, due to the focus on expressive guitar technique
recognition and use of deep learning models for real-time signal analysis.

Instrument augmentations have been proposed for a variety of musical instruments
such as the piano [41, 42], violin [43, 44], cello [45], trumpet [46], flute [47], hurdy-
gurdy [48], bagpipe [49, 50], mandolin [51], percussion instruments [52], and guitar
[15,53–66].

Puckette [53] proposed an interesting approach to the guitar synthesizer that in-
volved applying several effects and morphing techniques to guitar signals, controlling
a synthesis engine with pitch tracking information. Puckette’s solution allowed the

18

Chapter 2. Background and State Of The Art

signal to be processed with a latency that only depends on the signal path, while the
feature extraction latency only delays the control parameters. Albeit innovative in
its approach, Puckette’s solution is limited to morphing the guitar sounds via audio
effects.

With the Mobile Wireless Augmented Guitar [54], Bouillot et al. surmounted the
limited computing capabilities of embedded devices available at the time by devising
a wireless streaming system for both audio and control parameters. This approach
enabled signal processing through Pure Data (Pd) patches, however, the proposed
protocol compromised dynamically on PCM sample size to overcome transmission
latency, and the authors suggested that a more capable embedded device could elim-
inate the need for the transmission of the unprocessed signal.

Reboursière et al. presented the Multimodal Guitar [55], which is a toolbox for
guitar augmentation composed of Pd and Max/MSP algorithms for audio analysis,
gestural control, and audio synthesis. This selection of algorithms fits well the aug-
mentation task, however, the implementation in Pd and Max/MSP means that the
musician is limited to a separate processing unit.

Angulo et al. [56] presented an approach to hexaphonic guitar transcription and
visualization that consisted of a set of feature extractors for pitch, energy, chroma1

information, and a repurposing system that produced matching visuals. As the pre-
viously mentioned solutions, it required an external processing unit.

Furthermore, the HITar by Martelloni et al. [57,58] is an augmented steel-string
acoustic guitar with percussive hit detection capabilities. To do so, the authors
fitted the guitar with several piezoelectric transducers whose signals are routed to
a soundcard and a laptop, where both classification and embedding learning are
performed. The work of the authors will be further discussed in Section 2.3, as it
pertains to guitar technique recognition.

Lähdeoja’s augmented guitar [59] was fitted with a hexaphonic pickup and actu-
ators that could vibrate the guitar’s body for amplification of the processed signal.
In particular, the separate signals from the strings were sent to a laptop, where they
were processed with granular synthesis algorithms and crossfaded with slow-attack
flute samples. However, despite their augmented guitar being based on multiple in-
terconnected devices such as the guitar itself and a laptop, the authors described
the importance of a self-contained instrument to overcome the divide in the interface

1Chromagrams are a representation of spectral energy in the 12 semitones of the musical octave
[67]

19

2.2. Guitar Augmentations and Smart Musical Instruments

design.

GuitarAMI is instead a project by Meneses et al. [60, 61] that features a nylon
string acoustic guitar (i.e., classical guitar) and sensors such as an ultrasonic sensor
and accelerometer capture gestural data. This data was then used to control algo-
rithms that would help overcome limitations of the original instruments, such as the
limited duration of note sustain. In the first prototypes, all the sensor and audio data
processing was performed by a laptop, however, the authors stated how “the number
of connections and cables increased the possibility of malfunctioning and made the
instrument less robust” [61]. For this reason, the instrument was provided with a
Raspberry Pi embedded computer for sensor and audio processing. The instrument
was defined as a prototype under construction and is subject to investigations on
augmentation possibilities and interaction strategies, as it was subsequently provided
with different sensors [62]

GuiaRT [62, 63] is a platform for the development of a DSP-based interface for
guitarists to be used in interactive musical contexts. differently from GuitarAMI,
GuiaRT was fitted with a hexaphonic pickup and prepared for the extraction of low-
level descriptors such as start time, string number, fundamental frequencies, spectral
centroids, and some mid-level features [68, 69]. Contrarily to the previous AMI,
GuiaRT was used in conjunction with the Max software [70] running on a laptop for
feature extraction.

Graham et al. [64] instead proposed an AMI design that revolves around an
innovative approach to audio spatialization for a guitar performance. The authors
present a system in which features such as amplitude and pitch contour are extracted
from the signals coming from an exaphonic pickup. These are combined with infor-
mation about ancillary gestures (i.e., gestures that do not affect the sonic output,
see [71]) captured with an Xbox Kinect. The combination of these features is used
to control the specialization of hexaphonic signals in a loudspeaker array system.

The RANGE guitar by MacConnell et al. [15] was presented as a “minimally-
invasive” AMI. RANGE was fitted with touch potentiometers and a Linux-embedded
computer, i.e., Beaglebone, for control and DSP. Processing was performed with Pd
patches loaded into the embedded computer. The sensor array and processing unit
of RANGE were presented as a versatile synthesizer controller” by itself and, were
considered separate from the guitar itself. In particular, the authors stated how the
sensor and processing interface could be used to control synthesizer parameters while
the guitar was “played as usual”.

20

Chapter 2. Background and State Of The Art

The MIT Chameleon Guitar by Zoran et al. [65,72] is instead an instrument with
physically interchangeable acoustic resonators and DSP capabilities. The guitar was
provided with piezoelectric transducers and a DSP unit, which was fitted with an
algorithm designed to implement a “virtual chamber” based on the interchangeable
resonator of choice. Additional DSP algorithms for the cross-modulation of different
sensor signals were proposed by the authors. The Chameleon Guitar is an example
of a fully embedded AMI.

Other examples of guitars with augmented sonic capabilities embedded into the
instrument are modeling guitars such as the Line 6 Variax [73] and the Fender VG [74]
electric guitars. These offer the possibility of emulating different guitars (e.g., acous-
tic, 12-string) and tunings, through the use of hexaphonic pickups and internal pro-
cessing units. These solutions differ from MIDI guitars and simple guitar synthesizers
in the increased expressiveness carried from the guitar signal and transferred to the
modeled sound. This is likely to be attributed to carefully designed modeling al-
gorithms that do not. However, expressive playing only translates to the modeling
sounds provided with these instruments, while no intermediate expressive represen-
tation of the signal can be accessed for alternate uses.

Additionally, another instrument that blurs the line between AMI and SMI is
the MUSE Synth Guitar [66], a custom self-contained guitar synthesizer built for
the guitarist of the rock band MUSE. The guitar was fitted with a Fishman MIDI
hexaphonic pickup and an embedded computer. The MIDI pickup was used to control
a VST synthesizer plugin running on the embedded computer, effectively making for
one of the few self-contained guitar synthesizers.

A much different approach from all the previous studies was adopted by Vanegas
[75] with the MIDI Pick. It consisted of a guitar pick with sensors that were used
to capture finger pressure information. Such data was captured by a microcontroller
and wirelessly sent to a laptop to control effects and synthesis algorithms. Despite
the wireless capabilities and execution of some embedded computations to capture
sensor data, the MIDI Pick relies on a laptop for audio processing.

Smart Musical Instruments

Despite the affinity with AMIs, we situate this work in the context of Smart Musical
Instruments [29]. This emerging class of musical instruments was defined as a family
of IoMusT devices that are “characterized by sensors, actuators, embedded intelli-
gence, and wireless connectivity to local networks and to the Internet” [25]. Some

21

2.2. Guitar Augmentations and Smart Musical Instruments

examples are the Sensus Smart Guitar [30], the Smart Cajón [76,77], and the Smart
Mandolin [78].

In [40] the author proposed a reflection on the distinction between AMIs and SMIs.
The author highlighted how AMIs are often based on a series of devices connected to
the instrument via cables, such as a PC, a soundcard, power supplies, and a speaker
or actuators. However, these often make for a setup that is cumbersome to transport
and awkward to use during a performance on stage [15, 79]. Conversely, SMIs have
been envisioned as self-contained instruments, where any processing or “intelligence”
is embedded into the instrument. The resulting remarks by the author were that
SMIs are not a subset of AMIs, but they rather share some common features.

Additionally, this thesis revolves around technologies that can enable the extrac-
tion of rather high-level features from real-time playing (i.e., use of expressive tech-
niques) thanks to modern deep learning neural networks. The embedded execution
of deep learning inference can enable advanced manipulation and analysis that is not
often found in AMIs.

The most prominent example of guitar-based SMI (or Smart Guitar) is the Sensus
Smart Guitar [29]. Sensus is a guitar that was fitted with sensors, control surfaces,
wireless communication technology, and most importantly an embedded computer
embedded with a Digital Audio Workstation (DAW) for internal processing of sensor
data and audio. Sensus was also able to receive real-time streaming of audio content
and musical control messages from multiple mobile phones for interactive jamming.

The work of this thesis partially overlaps with the field of AMIs and SMIs, there-
fore we compare our proposed approach to these related augmented and smart guitars
(see Table 2.1). In particular, the proposed approach for expressive guitar technique
recognition shares the same attention to real-time execution as any AMI, but it also
focuses on the embedded execution of analysis and recognition algorithms. Further-
more, we adopt technologies that enable the integration of audio signal processing
and sound synthesis in the same embedded device where recognition is performed [80].
Finally, differently from most other guitar augmentation projects, we do not focus on
the acquisition and processing of sensor data other than the audio signal.

22

Chapter 2. Background and State Of The Art

Table 2.1: Comparison of the related guitar augmentations with respect to technique
recognition and their embedded capabilities, or lack thereof.

Augmentation Instrument
Performs
Technique
recognition

Embedded
Sensor

Processing

Embedded
Signal

analysis

Embedded
Audio

Processing

Academic
or Open
source

Puckette’s Patch for guitar
[53]

Electric
Guitar No No No No Yes

Mobile Wireless Aug-
mented Guitar [54]

Electric
Guitar No Yes no no Yes

Multimodal Guitar [55] Any Guitar No No No No Yes

Angulo et al. [56] Classical
guitar No No No No Yes

HITar [57,58] Acoustic
guitar Yes No No No Yes

Lähdeoja augmented guitar
[59]

Acoustic
guitar No No No No Yes

GuitarAMI [60,61] Classical
Guitar No Yes No Yes Yes

GuiaRT [62,63] Classical
guitar Yes No No No Yes

Spatial audio guitar by Gra-
ham et al. [64]

Electric
Guitar No No No No Yes

RANGE guitar [15] Electric
Guitar No Yes No Yes Yes

MIT Chameleon Guitar [65,
72]

Hybrid
Guitar No Yes No Yes Yes

Line6 Variax [73] Electric
Guitar ? No ? Yes No*

Roland/Fender VG [74] Electric
Guitar ? No ? Yes No*

Elk MUSE Synth Guitar
[66]

Electric
Guitar No No Yes Yes No*

MIDI Pick [75] Pick No Yes No No Yes

Sensus smart Guitar [29] Electric
Guitar No Yes No Yes Yes

This thesis’ work Acoustic
Guitar Yes No Yes Yes Yes

* Commercial and/or
closed-source projects.

23

2.3. Expressive guitar playing technique recognition

2.3 Expressive guitar playing technique recognition

Expressive playing techniques, or instrument playing techniques, can then be de-
fined as musical gestures that impress expressive variability to how musical notes
are produced. Musical gestures are briefly introduced by Miranda et al. [31], while
Cadoz et al. [81] presented a deeper analysis. In their work, Lostanlen et al. [82]
present clear evidence on the pervasive use of playing techniques in many music gen-
res, highlighting even how gestural information can be a superior organizing principle
in music corpora, in comparison to the more widespread classification depending on
organology (the categorization into different instruments). Automatic recognition
of expressive playing techniques has been investigated for a wide range of musical
instruments such as piano [83], percussion, clarinet [84], violin [85], erhu [86] and
guitar [57, 58, 82, 87–100]. Furthermore, some went as far as proposing taxonomies
and benchmarking existing timbral features for instrument and playing technique
detection with a large number of instruments [82]. However, most of the existing ap-
proaches for playing technique recognition have been focusing on offline recognition
for tasks such as music transcription.

Ozaslan et al. [87] presented an approach and preliminary results for the detection
of a few different left-hand articulations on nylon string guitars. However, the results
were obtained with a non-real-time system and a rather simple approach.

Reboursiere et al. [88] presented preliminary results on the detection of 7 guitar
techniques with a hexaphonic pickup. The authors applied different signal processing
and feature extraction operations to each technique. The resulting set of custom
detectors showed a general detection success rate of about 90% across the different
techniques, which the authors describe as proof-of-concept results. They also pro-
posed an embedded hardware implementation that was designed around an FPGA
component, however, not all the detection algorithms were adapted for real-time us-
age. Some of the authors went ahead to improve the system [89], reaching a 95%
success rate, however, the algorithms for each technique could not be combined suc-
cessfully and the results were obtained with the offline implementations.

Foulon et al. [90] presented an approach for interactive detection of guitar play-
ing modes (i.e., melody, bass, and chords) with a Bayesian network classifier. The
authors used a 2-step analysis process, where classification is first conducted on 50
ms frames yielding a reportedly “imperfect accuracy”, while the classification results
were aggregated over longer time periods to improve the accuracy of the prediction.

24

Chapter 2. Background and State Of The Art

Abeßer et al. [91] developed an offline classifier for the detection of different
playing styles on bass guitar recordings. The authors compared different conven-
tional machine learning classifiers and obtained the best performance with a Gaussian
Mixture Model.

Traube et al. [92] proposed a method for the estimation of the excitation point
location on a guitar string. The authors based their work on the assumption that the
power spectrum of a plucked string sound has a comb-filter shape. The plucking point
estimation is performed using autocorrelation and iterative least-square estimation.

Penttinen et al. [93] proposed a time-domain method for estimating the plucking
point, similar to the previous study.

Kehling et al. [94] developed a tablature transcription algorithm that classifies
the string played, the plucking style (i.e., Finger, Picked, Muted), and the playing
technique used. The authors used a multi-class Support Vector Machine (SVM) with
a Radial Basis Function kernel and the classification accuracy obtained for playing
techniques was 83%.

Barbancho et al. [95] proposed a technique for the detection of chord sequences
and fingering configurations from guitar recordings.

Additionally, Barbancho et al. [96] approached the problem of detecting the pitch
direction (i.e., ascending or descending) of arpeggio chords with feature extraction and
conventional ML techniques. A Fisher linear discriminant algorithm and a Support
Vector Machine (SVM) were compared, revealing comparable performances, with a
slightly better performance provided by the SVM.

Chen et al. [97] presented a two-stage algorithm for detecting five guitar playing
techniques in guitar solos. Although innovative, the method showed limited perfor-
mance, with an average F-score of 74% across all the techniques.

Lostanlen et al. [82] approached the complex problem of instrumental playing
technique detection with a wide range of instruments. The authors treated this
problem as an extension of the musical instrument recognition problem.

Su et al. [98] investigated the use of sparse coding for the task of guitar play-
ing technique classification. The results obtained in the comparison between many
different feature combinations were promising for sparse coding, however, the best
average F1-score obtained across 7 common techniques was 71.7%.

Part of the authors went ahead and improved the playing technique classifier,
which was included in a broader transcription context in [99]. The new version
used a neural network for classification (i.e., a convolutional model) and reached an

25

2.4. Technology for real-time embedded audio deep learning

average F-score of 79.72%. As the previous iteration, the algorithm proposed works
in an offline context, on pre-recorded monophonic guitar excerpts.

Percussive Fingerstyle Studies

Percussive fingerstyle is a set of techniques for acoustic guitars that involve the use of
the body of the guitar as a percussive instrument to accompany a solo performance.
The technique dates back to several decades ago, but it witnessed an increase in pop-
ularity in recent years. An interview study of the style was presented by Martelloni
et al. [100] who observed percussive fingerstyle guitarists in different conditions and
investigated possible guitar augmentation that could benefit their performance. The
study resulted in a map of the locations of the most common percussive interactions
and various common patterns in the needs of the players. These needs include a
way to increase the dynamic range of the percussion sounds and the desire to have
separate processing paths for different types of interaction. This suggests that this
playing style may pair well with real-time classification of the percussion area used,
which can be used to trigger substitute sounds (synthesized or sampled) or to control
the processing of the guitar signal.

The authors went ahead to implement an augmented guitar prototype [57] with
a magnetic pickup for the strings and three piezoelectric transducers attached inside
the body of the instrument. The authors developed a hit classification system with
2 output classes: one for kick-drum-like gestures (produced with the wrist) and the
other for every other percussive gesture. The classification algorithm was developed
using Max/MSP and it triggered different sound samples depending on which of
the two classes was predicted. The system designed by the authors involves the
modification of an acoustic guitar with additional transducers and the sound analysis
algorithms are executed on an external computer.

The latest work by Martelloni et al. [58] proposed the combination of classifica-
tion and embedding learning for continuous control over a modal synthesis engine.

2.4 Technology for real-time embedded audio deep

learning

In recent years we have witnessed an increase in the computing power and features
of commercially available embedded devices and Single-Board Computers (SBCs).

26

Chapter 2. Background and State Of The Art

While simpler microcontrollers have often been used for the creation of guitar aug-
mentations and SMIs (See Section 2.2), more powerful Single-Board Computers offer
new possibilities for embedded audio processing and the use of machine learning.

Moreover, the growth in compute capabilities of embedded computers has fos-
tered the creation of various embedded audio platforms such as Elk Audio OS [24],
Bela [23], Prynth [101], Satellite CCRMA [102], and Axoloti2. Nevertheless, their
applicability to our embedded real-time recognition project was not clear due to the
lack of information on deep learning inference engines for real-time audio tasks. Here
we will briefly present relevant embedded audio platforms and inference engines.

2.4.1 Embedded Audio Platforms

Among recent embedded audio platforms, Elk Audio OS [24] and Bela [23] stand out
as the most prominent and versatile systems within the open-source domain. Both
are based on the Xenomai Linux real-time kernel, which allows for submillisecond
round-trip audio latencies

Bela

Bela is an open-source embedded platform for sensor and audio processing [103].
It uses a Beagle Bone Black3 single-board computer with a custom hard real-time
audio environment. The Beagle Bone Black contains a 1 GHz ARM processor, 512
MB of RAM, and 4GB of onboard memory. storage. The BeagleBone also includes
two Programmable Realtime Units that are used to move audio and sensor data to
memory.

The Elk Audio Operating System

Elk Audio OS [24] is a Linux operating system based on the Xenomai real-time kernel
developed by the Elk Audio AB company4. Elk Audio OS is optimized for low-latency
audio processing on a wide range of embedded computing devices. In particular, Elk
Audio OS comes with the headless DAW Sushi that can host several types of audio
plugins, such as the popular VST 2 and 3 formats by Steinberg. As a result, the
development of embedded audio processing software is simpler than with alternatives

2http://www.axoloti.com/, https://github.com/axoloti/axoloti
3http://beagleboard.org/black
4https://www.elk.audio/

27

http://www.axoloti.com/
https://github.com/axoloti/axoloti
http://beagleboard.org/black
https://www.elk.audio/

2.4. Technology for real-time embedded audio deep learning

such as DSP units or Field Programmable Gate Array (FPGA). Additionally, the use
of the Xenomai kernel enables quick and predictable audio processing.

As a side-effect of using both Xenomai and a regular Linux kernel, Elk Audio OS
provides tools to identify whenever costly or forbidden code operations are executed
from the real-time processing thread, as they cause the OS to switch from the high-
performance kernel to the accompanying Linux kernel. This will be further discussed
in Chapter 7.

The open-source version of Elk Audio OS is supported for the Raspberry Pi 4
SBC, which features a Quad-core Cortex-A72 (ARM v8) 64-bit processor with a clock
speed of 1.8GHz, and LPDDR4 memory, with different versions going from 1GB up
to 8GB. Previous OS releases to version 0.10 support the RPi3 as well. Additionally,
the company provides a commercial version of Elk Audio OS for the STM32MP1,
NXP i.MX8M, Raspberry Pi Compute Module 4, and any Intel x86 SOC.

Elk Audio OS was chosen as the platform for most of the works presented in
the thesis for the ease of development of optimized C++ code, the availability of
a fully free distribution, and the possibility of running the operating system on the
Raspberry Pi 4, which is rather powerful in comparison to previous versions or the
hardware platform of Bela. A final benefit of using Elk Audio OS is that the plugins
compiled for the system can rather easily be compiled for many other platforms,
including Windows, Linux, and Mac OS computers.

2.4.2 Deep learning Inference Engines for real-time Audio

Deep learning inference is the process of computing every operation that is part of
a neural network, in order to process inputs and produce an output prediction. In-
ference differences from network training in that it does not involve learning model
weights. The execution of inference can be made with the same high-level program-
ming languages with which models are typically trained (e.g., Python), but the real-
time and embeddability requirements of this project ask for more optimized execution.
In research, it is not uncommon to find examples of bespoke C++ implementations
of specific neural networks to enable quick inference. One example is the work by
Wright et al. [104], who introduced a neural approach to audio effect modeling. The
authors implemented from scratch a real-time inference routine using C++ and the
Eigen linear algebra library. However, this specialized practice leads to the develop-
ment of inference routines that are hardly flexible. In particular, any simple change
to the neural model would require modifying the code routine.

28

Chapter 2. Background and State Of The Art

A more common approach used in embedded, mobile, and edge computing is that
of inference engines (IEs). These are inference libraries that are optimized for fast
inference and flexibility, allowing developers to load model structure information and
weights from either a file or a byte stream. Some of the most popular IEs are Ten-
sorFlow Lite (TFLite) [105], torchlib+TorchScript [106], and ONNX Runtime [107].

However, at the time this project started, we witnessed a general confusion around
the compatibility of these IEs with real-time audio applications, which require that
the code does not contain any non-real-time-safe operation that can slow down the
processing of the audio signal. Additionally, we acknowledged the existence of small
open-source projects for inference engines that are specific to audio: Chowdhury [108]
developed RTNeural, which is an IE designed to be used for real-time audio appli-
cations. The author compared the performance of the library against the regular
PyTorch C++ API (i.e., TorchScript). However, the landscape of available IEs has
evolved since then, especially with the availability of the aforementioned “lite” opti-
mized versions of most frameworks. Such confusion and lack of comparisons between
IEs for audio led us to further investigate the performance of the aforementioned four
IEs for embedded real-time audio classification (Chapter 5).

2.5 Summary

Despite the existence of various augmented guitars and some smart guitars, we found
a lack of projects that integrated real-time expressive guitar technique recognition
and embedded execution. Furthermore, despite the growing interest in deep learning
audio analysis, we found scarce availability of open projects that performed real-
time audio analysis with deep learning on embedded computers. Additionally,
we found that information about the use of deep learning inference engines for real-
time audio was lacking. Finally, as a consequence of the previous, guides for deep
learning deployment for embedded audio platforms were, to the best of our knowledge,
non-existent at the beginning of this project. In summary, the pitfalls found in the
state-of-the-art were the following:

1. Limited Integration of Real-time Expressive Guitar Technique Recog-
nition: The existing augmented guitars and smart guitars lacked comprehen-
sive integration of real-time expressive guitar technique recognition and embed-
ded execution.

29

2.5. Summary

2. Scarcity of Open Projects for Real-time Audio Analysis with Deep
Learning on Embedded Computers: Despite the increasing interest in deep
learning audio analysis, we found a notable scarcity of open projects that target
real-time audio analysis using deep learning on embedded computers. This lim-
itation posed challenges for developers seeking to implement such technologies
in resource-constrained environments.

3. Lack of Information on Deep Learning for Real-time Audio: The avail-
able information on the use of deep learning inference engines for real-time
audio applications was insufficient. This gap in knowledge hindered the un-
derstanding and advancement of techniques necessary for implementing deep
learning solutions in real-time audio processing scenarios.

4. Absence of Guides for Deep Learning Deployment on Embedded Au-
dio Platforms: The absence of comprehensive guides or resources for deploy-
ing deep learning models on embedded audio platforms created a significant
obstacle. Developers faced difficulties in navigating the intricacies of compiling
libraries and adapting deep learning models for real-time inference on embedded
systems.

These collectively highlighted the need for advancements in expressive guitar
recognition. Additionally, they point out the need to foster open projects for real-
time audio analysis on embedded systems, the improvement of available information
on deep learning for real-time audio, and the development of practical guides for
deploying deep learning on embedded audio platforms. Addressing these challenges
would contribute to the evolution of augmented musical instruments and hopefully
foster broader applications in the realm of embedded real-time audio analysis and
processing.

30

Chapter 3

Challenges of Embedded Real-time
Music Information Retrieval

Real-time applications in the field of MIR are garnering increased attention, espe-
cially with the widespread adoption of deep learning for music analysis. However,
incorporating deep learning into real-time MIR systems presents challenges and limi-
tations that need to be effectively addressed to achieve accurate and speedy real-time
performance. Additionally, modern embedded computers offer promising opportuni-
ties for compact MIR systems, such as DMIs. However, these embedded computing
platforms are typically resource-constrained, posing additional limitations to this
endeavor. In this chapter, we identify and discuss the challenges and limitations as-
sociated with embedded real-time MIR. Furthermore, we present potential solutions
to these challenges. We then demonstrate the viability of our proposed solutions
through the development of an embedded real-time classifier designed to recognize
expressive acoustic guitar techniques. Our classifier achieved 99.2% accuracy in dis-
tinguishing pitched and percussive techniques and an average accuracy of 99.1% in
distinguishing four distinct percussive techniques and an additional class for pitched
sounds. The full classification task is a considerably more complex learning problem.
In this case, our preliminary results reached only 56.5% accuracy. The results were
produced with an average latency of 30.7 ms.

The work described in this chapter is part of a contribution presented at the 25th

31

3.1. Introduction

International Conference on Digital Audio Effects [109].

3.1 Introduction

MIR is a specialized research field that centers on analyzing and extracting infor-
mation from music. Key tasks in MIR encompass beat-detection [110], onset detec-
tion [111], music transcription [112], and genre classification [113]. MIR research often
focuses on offline methodologies, dealing with extensive datasets and not imposing
strict execution time constraints. However, the sub-domain of real-time Music Infor-
mation Retrieval (rtMIR) has gained notable traction in recent times due to its poten-
tial in developing music performance tools like digital musical instruments [114,115],
including smart musical instruments [25].

rtMIR presents unique challenges and constraints not present in offline contexts,
mainly due to the rigid requirements on algorithm execution time and system latency
in real-time systems [116]. These challenges are deepened by the computational de-
mands of deep learning models, which, while offering high accuracy, can strain com-
putational resources. Furthermore, embedded devices and single-board computers
have emerged as powerful tools for compact learning and music systems [117–119].
However, their restricted computational capabilities pose additional hurdles for rt-
MIR.

In this chapter, we identify and discuss the challenges of developing embedded
rtMIR systems dedicated to musical audio signals. We present a range of solutions
to address these challenges. Moreover, we demonstrate the validity of select solutions
by implementing an embedded real-time expressive technique classifier for acoustic
steel string guitars. We focus on CPU-based embedded hardware such as single-board
computers, which can run an operating system. This excludes simpler devices such
as microcontrollers. In particular, we identified the following four core challenges:

1. Causality, or availability of only causal information in online/real-time envi-
ronments;

2. Tradeoff between accuracy and latency;

3. Audio processing deadlines and real-time-safe programming;

4. Embedded hardware and software limitations.

32

Chapter 3. Challenges of Embedded Real-time Music Information Retrieval

The remainder of the chapter is organized as follows. Sections 3.2, 3.3, 3.4, and
3.5 present the four challenges above, accompanying each discussion with proposed
solutions and viable tradeoffs. Then, in Section 3.6 we demonstrate some of the
proposed solutions in a real-world use case: the implementation of an embedded real-
time classifier for expressive playing technique recognition on the acoustic guitar.
Finally, we summarize our findings in Section 3.7

3.2 Challenge 1: Availability of causal information

only

The primary distinction between offline and rtMIR systems lies in the possibility, or
lack thereof, to analyze the complete input signal at any given moment. In offline
systems, this translates to the ability to collect extensive data around points of in-
terest in the input signal, enabling the acquisition of a wealth of information. In
particular, recorded sound events can be analyzed in their entirety. In contrast, at
any point of execution, rtMIR systems can process only the current and past inputs.
As a result, any type of real-time analysis of the input of such systems will report
its results with a certain delay (i.e., latency). However, it is imperative for rtMIR
systems to comply with a target latency that depends on the application, so as to be
able to coherently use the analysis results for any application-defined objective (e.g.,
real-time sound generation).

In rtMIR systems, part of the latency between input and results is determined by
the execution time of the analysis algorithms involved, but a large part is also played
by having to wait for part of the input signal to be collected in order to be analyzed.
The latter is a direct consequence of the sole availability of causal information in real-
time. For instance, music event classification from an audio signal can only happen
with a non-zero delay from each event (i.e., latency) due to the necessity of collecting
a part of the signal (i.e., window) for analysis. Since increased input information
regarding a sound event can enhance classification accuracy, similar rtMIR systems
need to be configured to strike a balance between accuracy and the latency of result
generation. The same holds for non-classification rtMIR systems (e.g., regression
[120]) and more general audio tasks (e.g., environmental sound recognition [117]).
This will be discussed in detail in part of the next section.

Furthermore, some methods or algorithms employed in MIR are exclusively appli-
cable to offline scenarios, like Bi-directional Recurrent Neural Networks (BiRNNs).

33

3.2. Challenge 1: Availability of causal information only

These neural networks, for instance, have demonstrated success in tasks such as of-
fline music-genre classification [121] and onset detection [122]. However, they are
designed to leverage information from both past and future contexts, making them
unsuitable for rtMIR.

Additionally, certain offline algorithms are incompatible with real-time systems
due to their need for the entire audio signal. An example of this is the whitening
technique, which involves dividing the magnitude of each bin of Short-time Fourier
transform (STFT) spectrograms by the overall maximum value for the bin. While
whitening has proven effective in enhancing the performance of onset detectors in var-
ious scenarios [123], it relies on non-causal information and is unsuitable for real-time
onset detection. An overview of the real-time capabilities of specific onset detection
methods mentioned in this context was provided by Bock et al. [124].

3.2.1 Potential solutions

It is clear how the availability of only past and current input information is a core
limitation of rtMIR. As so, this limitation cannot be overcome, however, it has to be
taken into account in the design of such systems.

First of all, whenever the specific task of a rtMIR system allows for a tolerable de-
gree of latency, the signal analysis can be intentionally delayed to provide the analysis
algorithm with a section of the input signal. For instance, in the expressive technique
recognition algorithm described in Section 3.6, the feature extraction window was set
to be as large as possible, while fitting in the maximum target latency.

Nevertheless, certain algorithms are unsuitable for real-time applications by defi-
nition. These algorithms necessitate the collection of complete signal information in
advance, as exemplified by operations like the aforementioned whitening. In numerous
instances, suitable approximations of these operations can be used as replacements.
These approximations should depend solely on the portion of the signal accumulated
up to each analysis point. An illustration of this is the adaptive whitening technique
for onset detection introduced by Stowell et al. [123]. Adaptive whitening is integrated
into the Aubio onset detector suite used for the classifier at Section 3.6. Likewise,
some operations within neural networks are exclusively suitable for offline MIR appli-
cations. A prime example is the bidirectional information flow in BiRNNs [121,122].
Bidirectional layers must be replaced with unidirectional Recurrent Neural Networks
(RNNs) in real-time scenarios. This strategy was employed by Bock et al. [125], who
introduced an effective real-time onset detector derived from a previously established

34

Chapter 3. Challenges of Embedded Real-time Music Information Retrieval

method designed for offline contexts.
The following section will present how the necessary delay introduced by waiting

to collect input information can be tuned to find a tradeoff between latency and
accuracy of rtMIR systems. Moreover, it discusses the additional aspects that can
affect both accuracy and latency.

3.3 Challenge 2: Tradeoff between accuracy and

latency

In rtMIR systems, a balance is struck between the precision of analysis results and
the associated latency. This compromise arises from two key factors: the availability
of only past information (causal) introduced in the previous Section, and the rela-
tion between the accuracy and execution time inherent to many analysis algorithms,
especially machine learning and deep learning techniques.

As discussed in the previous section, rtMIR systems have the capacity to process
only past and current inputs at any point in time. For this reason, their computations
are intentionally delayed in time to accumulate a signal window. Such windows begin
at a point of interest in time and end when the computations that constitute the
analysis start. In this context, increasing the size of the analysis window will allow
the capture of a larger portion of the sound of interest. In many cases, the availability
of a larger portion of audio can directly lead to enhanced accuracy in the results of the
analysis. For instance, a larger window in systems such as sound event recognition
allows a rtMIR algorithm to take into account a more substantial portion of the
temporal envelope and spectral content of the sound, thereby improving the quality
of the features that can be extracted and reducing the likelihood of false positives.
In pitch tracking, a larger window will enable a correct estimation of the pitch of
lower-frequency sounds. It is worth noticing, however, as a larger window will only
be useful if it includes more of the signal portion of interest, and not preceding or
following portions.

At the same time, delaying signal analysis introduces latency between the input
and the generation of results. This latency must be managed within specific tolerances
for different tasks and applications. For instance, a system designed to respond to a
sound by generating new sounds should maintain a latency of around 30 ms or less.
This is because complex tones separated by intervals shorter than this delay may be
perceived by the human auditory system as simultaneous [21].

35

3.3. Challenge 2: Tradeoff between accuracy and latency

In addition to the deliberate delays that can be introduced to collect more in-
put information, the execution time of rtMIR algorithms plays a crucial role in the
overall latency of real-time systems. This is particularly critical when considering
modern machine learning and deep learning approaches, which are often optimized
for achieving the highest accuracy in scenarios where execution time constraints are
not imposed (e.g., offline MIR). While it is possible to reduce the execution time for
most of these algorithms, doing so typically comes at the cost of a diminished result
quality. For example, the execution time of inference using a K-nearest neighbors
(KNN) classifier may be high when dealing with a large number of training samples,
but it can be mitigated by removing a certain number of samples from the dataset.
However, this operation effectively diminishes the amount of information that charac-
terizes the output classes, therefore affecting the accuracy of the system. Conversely,
for deep learning algorithms, the reduction of training data has no impact on infer-
ence time. Still, execution time can be significantly reduced by either decreasing the
depth and width of neural network models or reducing the precision of the network’s
weights (weight quantization). However, any of these operations inevitably leads to
a reduction in result quality.

3.3.1 Potential solutions

As mentioned in previous sections, signal analysis can be delayed up to a maximum
tolerable latency. This is in itself a tradeoff since it involves forgoing a potentially
high accuracy to achieve a specific target latency.

In the context of a deep classifier, there are several methods to reduce execution
time. These include making the neural network shallower, or narrower, or reducing
the precision of the network weights through weight quantization. The first two
methods necessitate retraining the neural network and directly impact execution time
by reducing the number of computations required. In our classifier, we adjusted the
size of the classifier network to meet the target latency (as detailed in Section 3.6.3).

Weight quantization, on the other hand, is applied to trained models and involves
converting floating-point weights into fixed-point values. This significantly reduces
execution time due to the reduced computational cost of fixed-point operations. How-
ever, it also diminishes the accuracy of neural networks. The extent of this impact
on results depends on the structure of the neural network, its size, and its overall
resilience to weight quantization. In our expressive technique classifier, weight quan-
tization led to a significant reduction in result accuracy (ranging from 10% to 20%,

36

Chapter 3. Challenges of Embedded Real-time Music Information Retrieval

depending on the specific quantization techniques). Consequently, we opted not to
use weight quantization in the final models.

3.4 Challenge 3: Processing deadlines and

real-time-safe programming

Real-time audio software handles audio signals using buffers. These audio buffers have
a predetermined size in samples and are delivered to the software at a rate determined
by the audio sampling rate and the audio block size. Consequently, these systems have
a limited amount of time to process each input buffer before the subsequent buffer
arrives. This constrained “time budget” is especially critical for systems responsible
for generating an output audio signal. The time budget in seconds is simply obtained
with Equation 3.1.

T =
Audio block size

Sample rate
e.g.,

64 samples per block

48, 000 kHz
= 1.33× 10−3 s (3.1)

In the case of multichannel processing (e.g., stereo signals), the time budget will be
computed with respect to the number of frames per audio block, i.e., the number
of tuples of samples, with each tuple containing a sample from each channel. Any
inability to complete all computations within this time window can lead to audible
glitches in the output, which are directly caused by the presence of discontinuities
in the output buffer left by an incomplete write. Such an event, caused by the
consumption of the buffer happening at a faster pace than the writing operation, is
referred to as buffer underrun (or Xrun) [126]. For rtMIR systems operating on input
audio signals, a portion of the analysis computations must be executed at the same
rate as audio processing. This means these computations will consume a portion of
the available time budget. This also applies to rtMIR systems handling input audio
signals.

Lastly, in real-time audio programming, developers must adhere to using op-
erations that are guaranteed to complete within a known and bounded time (i.e.,
real-time-safe operations1 [127]). This ensures that buffer underruns do not happen,
as long as the sum of the execution times of every operation is smaller than the time
budget available. In particular, operations such as dynamic memory allocation, read-
ing data from disk, locking operations, inter-thread communication, and some system

1http://www.rossbencina.com/code/real-time-audio-programming-101-time-waits-for-nothing

37

http://www.rossbencina.com/code/real-time-audio-programming-101-time-waits-for-nothing

3.4. Challenge 3: Processing deadlines and real-time-safe programming

calls are not real-time-safe, as their execution time depends either on the availability
of hardware peripherals or unbounded computations on other threads. It is worth
noticing that developers should not only avoid such operations in their code but also
assess their absence in any external libraries employed. This can pose a challenge
when integrating code designed for offline use into real-time audio applications.

3.4.1 Potential solutions

Time deadlines

In this context, there are several modes of real-time execution that allow for different
solutions. The most strict constraint on execution time is posed by algorithms that
need to run for each audio block that is received from the analog to digital convert-
ers. A prime example of this case is software audio effects. In this case, the entire
algorithm execution should fit in the time budget available for each audio block. A
first approach is to reduce the number of computations performed by the analysis
algorithm, for example with the techniques mentioned in Section 3.3.1, while taking
into account how this can affect the quality of the results. Additionally, the size of
the audio buffer can be increased, therefore increasing the time between buffer read
operations, but this will slow down every step of the analysis.

In contrast, many rtMIR algorithms can be subdivided into multiple stages of
analysis, where some can run at a different rate of execution without affecting the
time-budget available. For example, the expressive technique recognition pipeline
presented in Section 3.6.3 is composed of an onset detector, a set of feature extractors,
and a deep learning classifier (see Figure 3.5). The onset detector must run in the real-
time thread of execution and will benefit from running at a high rate (i.e., small audio
buffer size), which reduces the latency with which onsets are detected. Conversely,
feature extraction is only necessary when an onset is detected, and the same principle
applies to the computation-intensive deep learning classifier. Furthermore, for our
specific task, it is reasonably assumed that there is no need to classify notes occurring
less than 20 ms apart. Consequently, both the feature extraction operation and the
execution of the classifiers are low-rate tasks. The onset detector was executed in the
real-time thread with a buffer size of 64 samples at 48 kHz (i.e., onset detection is
executed every 1.33 ms), while both the feature extraction and classification stages
can exceed the time budget of the audio processing routine (i.e., 1.33 ms), and their
execution can be moved to a separate lower-priority thread. A depiction of the flow

38

Chapter 3. Challenges of Embedded Real-time Music Information Retrieval

of execution of the classifier is displayed in Figure 3.1
However, this separation strategy is not applicable to end-to-end neural networks.

In fact, an underlying trend in deep learning is to develop end-to-end neural networks
capable of directly operating on raw data and generating results without the need for
additional algorithms. While this approach allows neural networks to learn “internal”
features that often outperform hand-crafted features in terms of descriptor quality,
it results in large indivisible models.

Different modes of execution and optimization techniques for neural networks are
further discussed in Chapter 7, Section 7.5, which present solutions in a broader
context than rtMIR, including for example audio processing algorithms.

Real-time safety

In addition to optimizing the execution time of the code developed for a rtMIR sys-
tem, it is crucial that developers use only real-time safe operations in audio processing
threads. As mentioned before, safe operations are those that will complete execu-
tion in a known and bounded execution time. These constraints exclude operations
such as dynamic memory allocation, for which standard implementations may cause
the real-time thread to wait on lower-priority threads that use the same data (i.e.,
priority inversion). In more critical situations, the memory allocator may have to
ask the operating system for more memory. Additionally, memory can be subjected
to paging, where chunks of memory are temporarily stored on disk and retrieved
on demand, at a higher cost. Ultimately, standard memory allocation will take an
unpredictable amount of time to allocate a block. Developers should avoid this by
allocating statically most of the data structures needed, dynamically allocating data
only from a non-real-time thread, or pre-allocating a memory pool and implementing
a non-locking memory allocator for cases that require dynamic allocation. Similar
operations to avoid using in the real-time thread are any locking operation such as
reading data from disk. However, as much as developers can avoid such operations
in their own code, it is also crucial to use only libraries and data structures that
strictly adhere to real-time safe operations. For example, if used improperly, the
std::vector data structure from the C++ Standard library will perform memory
allocation whenever the preallocated memory is full and the push_back operation is
used to append an element at the end of the vector. Our expressive technique recog-
nition system uses the real-time onset detector from the Aubio library [128], and the
feature extractors are C++ adaptations of tools from the TimbreID library [27].

39

3.4. Challenge 3: Processing deadlines and real-time-safe programming

Source
Onset

Detector
Feature

Extractors
DNN

Classifier
Output

Hard RT Soft RT

Figure 3.1: Flow of execution of the classification pipeline presented in Section 3.6.
The upper part of the image represents the classification pipeline, which is composed
by an onset detector, a set of feature extractors, and a deep classifier. The lower
part of the image displays a note in the audio signal and a set of adjacent rectangles
with black borders, each representing the time slot to process each audio block. Each
red rectangle represents the computations performed by the onset detector, which is
updated at each block for low latency detection. Conversely, the cyan and yellow rect-
angles represent feature extraction and classification respectively, which are triggered
whenever an onset is found, instead of being executed for each block. Executing the
whole pipeline or end-to-end neural network for each audio block would require an
increase in the audio block size, therefore increasing the latency of the entire system
and any other audio processing task performed on the same device.

40

Chapter 3. Challenges of Embedded Real-time Music Information Retrieval

Furthermore, there are several deep learning execution libraries available that
enable quick neural network inference without compromising real-time-safe program-
ming principles, including TFLite, libtorch with Torchscript ONNX Runtime, and
RTNeural [108]. A more detailed comparison of deep learning IEs was carried out,
and the results are reported in Chapter 5.

3.5 Challenge 4: Embedded hardware and software

limitations

The performance of any rtMIR system is dependent on the limitations of the comput-
ing hardware used, along with the low-level software (e.g., OS) of its target comput-
ing device. Contemporary personal computers are typically powerful and equipped
with hardware optimized for high-throughput operations such as Graphics Processing
Units (GPUs). In contrast, embedded computers are often characterized by limited
resources, which pose numerous challenges for real-time audio and rtMIR applica-
tions.

For many MIR tasks, deep learning algorithms have replaced traditional machine
learning and simpler heuristics due to their superior performance in terms of result
quality [112, 122, 125, 129]. However, neural networks tend to be more computation-
ally complex than their simpler counterparts, increasing the number of operations
to perform in real-time. Furthermore, embedded computers are generally resource-
constrained devices when compared to general-purpose PCs. In particular, embedded
computers usually have reduced CPU speeds, core count, RAM amount, and speed in
comparison with regular PCs. Moreover, very few embedded computers are provided
with deep-learning-enabled GPUs (e.g., supporting Nvidia CUDA drivers) or similar
acceleration hardware for deep learning inference, such as Tensor Processing Units
(TPUs).

Some embedded music systems use a paradigm where audio and/or sensor data is
collected on-site by an embedded device, and processed in a separate powerful cloud
server [130]. However, this introduces high communication latencies that are not
desirable in real-time systems.

41

3.5. Challenge 4: Embedded hardware and software limitations

3.5.1 Potential solutions

Training and running modern deep learning models can be computationally demand-
ing. On powerful PCs, both training and inference tasks are accelerated through the
use of GPUs, which are specialized hardware designed for efficient parallel processing.
However, the majority of embedded computers lack dedicated hardware support to
accelerate deep learning inference, let alone training. Notable exceptions include the
Nvidia Jetson family of embedded computers, which offer an integrated GPU that
supports deep learning acceleration through Nvidia’s CUDA drivers.

Additionally, various low-power processing units for efficient deep learning infer-
ence have emerged, including Google’s Coral TPU and Intel’s Visual Processing Units
(VPUs). These processing units are available in various forms, including embedded
computing boards like the Coral Dev Board2, as well as external devices that connect
to the CPU of embedded computers via USB, such as the Coral USB Accelerator3

and the Neural Compute Stick4.
Furthermore, the more versatile nature of FPGAs has garnered increasing interest

with regard to deep learning inference. This is due to the creation of new tools
for converting neural networks into FPGA-compatible code. Vandendriessche et al.
[117] recently conducted a performance comparison of various embedded options for
environmental sound recognition, including TPUs and FPGAs. Their study focused
on Convolutional Neural Networks (CNNs), a type of neural network that demands
a high degree of parallel processing. FPGAs have also been explored for ultra-low
latency DSP. Specifically, Risset et al. presented initial results on the development of
a tool capable of compiling Faust code for FPGAs [119]. Additionally, Wegener et al.
recently described a method for interfacing Pd with an FPGA to achieve low-latency
physical modeling synthesis [131].

Nevertheless, single-board computers have witnessed significant advancements in
recent years, enabling them to handle relatively small neural networks like compact
Feed-Forward Neural Networks (FFNNs) using just the CPU. Additionally, it is worth
noting that each of the acceleration hardware solutions mentioned previously intro-
duces varying degrees of overhead due to their communication with the CPU. This
overhead may present challenges for extremely low-latency real-time systems.

In addition to the hardware alternatives mentioned, embedded rtMIR systems
2https://coral.ai/products/dev-board/
3https://coral.ai/products/accelerator
4https://www.intel.com/content/www/us/en/developer/tools/neural-compute-

stick/overview.html

42

https://coral.ai/products/dev-board/
https://coral.ai/products/accelerator
https://www.intel.com/content/www/us/en/developer/tools/neural-compute-stick/overview.html
https://www.intel.com/content/www/us/en/developer/tools/neural-compute-stick/overview.html

Chapter 3. Challenges of Embedded Real-time Music Information Retrieval

can experience significant improvements through the use of optimized real-time audio
platforms [116]. Among the most advanced options are the Bela platform [23] and
the Elk Audio OS [24]. Both of these solutions are built upon the Xenomai Cobalt
real-time kernel, which enables the achievement of extremely low round-trip audio
latency. Additionally, Vignati et al. [126] recently compared the performance of the
Xenomai kernel and the more accessible PREEMPT_RT patch for the Linux kernel.
Their findings indicated that Xenomai-based solutions offer superior performance,
but PREEMPT_RT remains considerably easier to implement while still delivering
good performance. In summary, these low-level software solutions empower embedded
rtMIR systems to harness more CPU performance and reduce latency compared to the
standard Linux kernel. Our expressive technique classifier is deployed on a Raspberry
Pi 4 computer running the Elk Audio OS (for the reasons discussed in Section 2.4.1),
and deep neural inference is executed on the CPU due to the considerations mentioned
earlier.

3.6 Expressive Guitar Technique Classifier

To illustrate some of the potential solutions outlined in the previous section, we devel-
oped a real-time embedded classification system capable of recognizing the expressive
playing techniques employed by an acoustic guitar player. The system is designed for
monophonic settings, where the musician plays one note at a time, similar to a guitar
solo performance. This is a notable restriction that was, however, found to be needed,
as the collection of polyphonic recordings and onset labeling process was found to
be considerably more complex than monophonic signals. Moreover, polyphonic onset
detection from a single audio signal is rather complex. However, polyphony could be
tackled with a hexaphonic separated pickup, and 6 separate onset detectors. Addi-
tionally, a single classifier could be trained on the mix of the six channels to retrieve
the predominant technique, or 6 separate classifiers could be employed, although at
a higher computational cost.

We performed the detection on a steel-string acoustic guitar, a versatile instru-
ment that enables a wide range of techniques, including percussive techniques, which
are drum-like sounds produced by striking the instrument’s body. Real-time iden-
tification of these percussive hits can be utilized for purposes like triggering drum
samples or controlling percussive synthesis algorithms during a performance. Our
classifier was deployed on a Raspberry Pi 4 embedded computer running the Elk

43

3.6. Expressive Guitar Technique Classifier

Audio OS. The source code for the expressive guitar technique classifier is available
online5. In particular, the classifier includes a deep neural network to predict the
playing technique from lower-level timbral features. Figure 3.2 depicts the hardware
setup of the classification system. In previous efforts, we employed simpler machine
learning techniques, such as KNN [132], which however yielded lower accuracies and
showed to be more subject to misclassification in the presence of feature noise.

Figure 3.2: Hardware setup of the expressive technique classifier. The audio signal is
acquired from the guitar pickup and channeled to a Raspberry Pi via the Elk PI Hat,
which is an audio interface with analog-to-digital and digital-to-analog converters.
The incoming audio is processed by the classification pipeline, and the result of the
classification is conveyed through the pitch of a short tune produced in the output.
Monitoring the classifier with one side of the headphones allows players to assess
the accuracy of the result and whether the sound is produced with a perceivable delay
from the input notes. The size of the computing device allows it to be embedded in
the guitar body, and even smaller peripherals can replace the current audio hat for a
reduced footprint.

The technique classifier was trained for three progressively complex tasks, as out-
lined in Section 3.6.1. Section 3.6.2 provides insights into the dataset employed for
training the classifier, while Section 3.6.3 delves into the specifics of the classification
pipeline. Lastly, Section 3.6.4 showcases the system’s performance results in terms
of accuracy and latency.

5https://github.com/CIMIL/cpp-timbreID/

44

https://github.com/CIMIL/cpp-timbreID/

Chapter 3. Challenges of Embedded Real-time Music Information Retrieval

3.6.1 Classification tasks

This study was structured around three classification tasks that incrementally vary
in complexity:

1. Task A [binary]: The initial task is a binary classification scenario, where the
neural network’s output must determine whether a note was played using a
pitched or a percussive technique.

2. Task B [percussive+]: The second task extends to multiclass classification,
encompassing four distinct percussive techniques alongside a unified class for
all pitched techniques, as further detailed in the next section.

3. Task C [full]: The third task encompasses the comprehensive classification
problem, requiring the discrimination of twelve individual expressive playing
techniques. This task presents a notably higher degree of complexity compared
to Task A and Task B.

3.6.2 Dataset

The classification implemented for this study includes a deep neural network, there-
fore we required an audio dataset of expressive guitar techniques played on the acous-
tic guitar. In particular, we required recordings from a variety of acoustic guitars,
each meticulously annotated with timbre labels for every played note. Moreover, the
recordings needed to be monophonic and to contain a number of relevant playing
techniques. Finally, as the final system must work without external microphones,
the dataset had to be recorded through pickups embedded into the guitar. Given the
scarcity of free datasets of guitar recordings complying with our specific requirements,
we proceeded to define and record a new dataset.

Assisted by professional guitarists, we assembled a list of twelve distinct acoustic
guitar techniques that include both percussive and pitched playing techniques:

1. “Kick” technique (percussive): producing a sound that resembles a kick drum
by hitting the lower right part of the top of the guitar body;

2. “Snare-A” technique (percussive): producing a sound by hitting the lower
right side of the guitar body;

3. “Tom” technique (percussive): producing a sound by hitting the area of the
guitar body near the top of the end of the fretboard, using the thumb;

45

3.6. Expressive Guitar Technique Classifier

4. “Snare-B” technique (percussive): producing a sound by hitting the muted
strings over the end of the fretboard;

5. Bending technique (pitched): pulling the strings, raising the pitch (half-tone
interval);

6. Hammer-on technique (pitched): sharply bringing a finger down onto the fin-
gerboard, creating a legato sound (half-tone interval);

7. Natural Harmonics (pitched): plucking the strings while lightly touching the
string with the fretting finger (i.e., not pressing the string fully), therefore
letting only some harmonic overtones ring;

8. Palm Mute: partially muting the strings with the palm of the picking hand,
resulting in a muffled sound.

9. “Pick Near Bridge” (pitched): plucking the string near to the guitar bridge,
producing sounds with great high-frequency content;

10. “Pick Over the Soundhole” (pitched): plucking the string over the soundhole,
producing sounds with lower treble content and greater intensity;

11. Staccato (pitched): playing short notes;

12. Vibrato (pitched): Moving the fretting finger to warp the pitch and tone of the
sound.

The choice of percussive techniques drew inspiration from the interview study on
percussive fingerstyle by Martelloni et al. [100]. The specific areas of the guitar body
used for each of these techniques are visualized in Figure 3.3. Hand positioning is
shown in Figure 3.4.

The dataset was created in collaboration with five experienced guitarists, each
using a different guitar, and recorded using the built-in pickups of their respective
guitars. The percussive techniques were recorded by each guitarist at three different
intensity levels (i.e., piano, mezzoforte, forte), with 10 repetitions for each level. For
the pitched techniques, individual notes were played within specified key ranges6.
Each key on each string was played three times for each of the intensity levels men-
tioned earlier. The onset detector indicated that the total recordings in the dataset

6Natural harmonics were recorded only for frets 5, 7, and 12, while the remaining pitched tech-
niques covered a range from open strings up to a fret between the 15th and 20th, depending on the
physical attributes of each guitar (e.g., cutaway, string gauge, guitar scale)

46

Chapter 3. Challenges of Embedded Real-time Music Information Retrieval

Figure 3.3: Percussive techniques of choice, with the relative guitar areas used. The
hand positions for each technique are illustrated in Figure 3.4.

encompassed approximately 35,035 notes. A later version of the dataset, with more
recordings and precisely labeled notes, was made freely available at [28].

3.6.3 Classification Pipeline

This section outlines the design and practical implementation of the classification
pipeline for real-time expressive guitar technique recognition on embedded devices.
Our chosen embedded platform is the Raspberry PI 4 (4 GB RAM version) with
the Elk Audio OS based on the considerations discussed in Section 3.5.1. To meet
the computational constraints of the Raspberry PI 4, we have adopted a multi-step
classification pipeline (see Section 3.4.1). This pipeline consists of three main com-
ponents: an onset detector, a set of feature extractors, and a deep learning classifier
(refer to Fig. 3.5).

This approach enables us to distinguish between tasks that require a high refresh
rate, such as onset detection, and those that can be executed at a lower frequency, like

47

3.6. Expressive Guitar Technique Classifier

Figure 3.4: Hand position for the four percussive techniques in the dataset. Top row,
from the left: Kick, Snare-A. Bottom row: Tom, Snare-B

feature extraction and classification. Additionally, the classification process can be
carried out on a separate lower-priority thread, decoupled from real-time execution.
Consequently, the latency introduced between sound and results by the software
system can be characterized as the sum of the latencies associated with each stage of
the pipeline (see Fig. 3.6). In the following sections, each step of the pipeline will be
described in detail.

Onset Detection

Onset detection involves identifying the starting point, i.e., the onset, of individual
sounds in an audio signal. Unlike the technique classifier at the end of the pipeline,
the onset detector must analyze the audio signal at a fast rate for low detection
latency. This requirement limits the selection of detectors to those that operate
quickly, precluding slower offline solutions like many deep learning approaches. We
found aubioonset [128] to be reliable and able to detect onsets with a small latency
interval.

48

Chapter 3. Challenges of Embedded Real-time Music Information Retrieval

Source
Trigger

Audio Signal

Onset
Detector

Feature
Extractors

DNN
Classifier Output

Figure 3.5: Classification pipeline. From the left, the signal from the guitar pickups
is fed to an onset detector, which detects the beginning of sounds in the audio signal.
Whenever this happens, the onset detector triggers the computation of several timbral
audio features from the audio signal. The trigger happens with a brief and deliberate
delay from detection (i.e., post-onset delay) so to collect a larger part of the signal
and align the beginning of the feature extraction windows with the onset. Then, a deep
classifier is employed to predict a technique class from the timbral features. Finally,
the resulting class determines the pitch of a short sinusoidal tone that is played in
output.

Feature Extraction

While it is feasible to design a neural network that directly processes the raw audio
signal, its high dimensionality may be difficult to handle, and this can be counterpro-
ductive for discriminative tasks [133] where the output must be a lower-dimensional,
high-level property. In these cases, an alternative approach is to use transformations
that more effectively capture the relevant signal properties of interest. Since expres-
sive techniques affect mostly the timbral content of notes (i.e., spectral content and
temporal envelope) we employed several timbral feature extractors. In particular, we
used extractors from the TimbreID library [27], which were ported from Pd externals
to C++ classes.

On the full dataset, the following feature extractors of the TimbreID library were
used: Attack time, Bark Spectrum Brightness, Bark Spectrum, Bark Frequency Cep-
stral Coefficient (BFCC), Cepstrum, Mel Frequency Cepstral Coefficient (MFCC),
and Peak sample. As introduced in Section 3.2.1, the feature extraction was delayed
as much as possible while fitting into the target latency, resulting in a feature analysis
window of 1,024 samples, which corresponds to 21.33 ms of audio at 48 kHz. To do
so, the computation of features was delayed by a brief time interval after each onset
detection (i.e., Post-onset delay), to align the beginning of the window with the note

49

3.6. Expressive Guitar Technique Classifier

Figure 3.6: Graphical representation of a guitar sound in the audio signal and all
the components of the total latency between a note onset and its classification. TOD

is the latency of detection of the sole onset detector. TPOD is a deliberate delay
introduced after the detection to align the feature extraction windows with the actual
onset. TFE is the actual time required to compute the features from the buffered audio
in the analysis window, and finally, TDNN is the time required by the deep classifier
to produce a prediction.

onset. For each classification task, a different feature subset was selected through a
process of trial and error.

Classification

The expressive playing technique classification process involved the use of a neural
network model loaded in TFLite. Each task required a different model to be trained.
Each model was a feed-forward neural network with dropout and batch normaliza-
tion. The development of each model followed an iterative trial-and-error approach,
wherein we experimented with various combinations of input features, layer configu-
rations, dropout probabilities, and optimization parameters.

For optimization, we found that the Stochastic Gradient Descent (SGD) optimizer

50

Chapter 3. Challenges of Embedded Real-time Music Information Retrieval

yielded the best results across all learning tasks. We used a learning rate of 1e−3

and experimented with momentum values ranging from 0.7 to 0.9. In terms of the
loss function, Sparse Categorical Cross-entropy was chosen, as it is well-suited for
multiclass classification problems.

To determine the appropriate model size, we measured the execution time of
models with different configurations on the target platform. Model sizes were then
adjusted to meet the specified target latency (as described in Section 3.3.1). Each
neural network underwent training for a varying number of epochs, ranging from 1,000
to 2,000, using a 75% stratified random split of the original dataset. The following
three neural networks were used for Task A, Task B, andTask C:

• Network A [binary]: Network A uses 110 input features (50 BFCC + first 60
Real Cepstrum features) and it is composed of four dense hidden layers (fully
connected) with 500 neurons each. The final layer has 2 neurons. Each of the
hidden layers used the LeakyRelu activation function, and they were interleaved
by dropout layers for regularization, as suggested by Sigtia et al; [134].

• Network B [percussive+]: The model used for task B was similar to that of
Task A, differing in the number of output neurons (i.e., five outputs for Net-
work B). The first four outputs represent the prediction of one of the four
percussive techniques, while the fifth corresponds to any pitched sound;

• Network C [Full]: Similarly, the same network of Task A and Task B was used
for the full classification task, except for using 513 input features (i.e., all the
Cepstrum coefficients) and having 12 outputs, one for each expressive technique.

3.6.4 Results and Discussion

Accuracy of the classifier

The success rate of the classifier was evaluated using key metrics, including accuracy,
precision, recall, and F1-score. These metrics were computed on a stratified random
split of 25% of the complete dataset, while the neural network models were exclusively
trained on the remaining 75% of the data. The optimal results achieved through an
iterative process for Task A, Task B, and Task C are detailed in Tables 3.1, 3.2, and
3.3, respectively. Additionally, Figures 3.7, 3.9 and 3.9 show the confusion matrices
for the three tasks respectively, normalized over the rows.

51

3.6. Expressive Guitar Technique Classifier

pe
rcu

ssi
ve

pit
che

d

Predicted label

pe
rcu

ssi
ve

pit
che

dTr
ue

 la
be

l 0.96 0.01

0.04 0.99

Figure 3.7: Confusion matrix for Task A.

Kic
k

Sn
are

-A To
m

Sn
are

-B

Pit
che

d

Predicted label

Kic
k

Sn
are

-A

To
m

Sn
are

-B

Pit
che

d

Tr
ue

 la
be

l

0.91 0.01 0.01 0 0

0 0.89 0.01 0 0

0.01 0.01 0.93 0 0

0 0 0.01 0.91 0

0.08 0.09 0.06 0.09 1

Figure 3.8: Confusion matrix for Task B.

52

Chapter 3. Challenges of Embedded Real-time Music Information Retrieval

Kic
k

Sn
are

-A To
m

Sn
are

-B

Ben
din

g

Ham
mer-

on

Nat.
Harm

on
ics

Pa
lm

Mute

Brid
ge

-Pi
ck

So
un

dh
ole

-Pi
ck

Sta
cca

to
Vibr

ato

Predicted label

Kic
k

Sn
are

-A

To
m

Sn
are

-B

Ben
din

g

Ham
mer-

on

Nat.
Harm

on
ics

Pa
lm

Mute

Brid
ge

-Pi
ck

So
un

dh
ole

-Pi
ck

Sta
cca

to

Vibr
ato

Tr
ue

 la
be

l

0.82 0.04 0 0 0 0 0 0 0 0 0 0

0 0.78 0.06 0 0 0 0.01 0 0 0 0 0

0 0.04 0.65 0 0 0 0 0.01 0 0 0 0

0.07 0 0.06 0.78 0 0 0 0 0 0 0 0

0 0 0 0.09 0.56 0.07 0.04 0.08 0.04 0.08 0.13 0.17

0.04 0 0 0 0.06 0.48 0.02 0.04 0.03 0.09 0.06 0.08

0 0 0 0.04 0.01 0 0.7 0.01 0.01 0.01 0.01 0.01

0.04 0.04 0 0.04 0.02 0.03 0.05 0.61 0.04 0.03 0.03 0.03

0 0.04 0.12 0 0.03 0.09 0.07 0.07 0.67 0.09 0.03 0.08

0 0 0 0 0.08 0.11 0.03 0.06 0.09 0.49 0.08 0.1

0.04 0 0 0 0.08 0.03 0.03 0.03 0.02 0.07 0.6 0.05

0 0.04 0.12 0.04 0.16 0.18 0.05 0.08 0.08 0.15 0.06 0.49

Figure 3.9: Confusion matrix for Task C.

53

3.6. Expressive Guitar Technique Classifier

Table 3.1: Summary of the results of Task A.

Class Precision Recall F1-score
Percussive 95.6% 92.6% 94.1%
Pitched 99.5% 99.7% 99.6%
Macro avg. 97.5% 96.1% 96.8%
Accuracy 99.2%

Table 3.2: Summary of the results of Task B.

Class Precision Recall F1-score
Kick 91.4% 95.5% 93.4%
Snare-A 89.3% 95.0% 92.1%
Tom 92.8% 91.8% 92.3%
Snare-B 90.9% 96.8% 93.7%
Pitched 99.7% 99.4% 99.5%
Macro avg. 92.8% 95.7% 94.2%
Accuracy 99.1%

These results show how both Task A and Task B can be tackled effectively with a
rather simple FFNN method. A trial-and-error method was employed to determine
the input features and classifier parameters. Notably, the classifier achieved an accu-
racy of 99.1% on Task B, surpassing previous results obtained with smaller feature
vectors on the simpler task of percussive technique recognition (92.5% [132]). The
performance of the classifier on task A shows how with as few as 21.33 ms of the
attack phase of a guitar sound, a set of feature extractors and a simple FFNN can
distinguish between percussive and pitched sounds. Such a model could be used as
a first step of a hierarchical classification system, where different approaches can be
adopted to further refine the classification, depending on whether the current sound
is found to be percussive or pitched. Task B however, is an example of a complete
system that could be used to trigger drum samples whenever a guitarist hits a percus-
sive area. In this case, pitched sounds are classified rather accurately as the “pitched”
class, so as not to trigger unwanted percussive samples. Conversely, Task C proved to
be considerably more complex. The confusion matrix in Figure 3.9 clearly shows how
pitched techniques are affected the most, while percussive techniques show higher,
despite reduced, precision.

Here we compile a list of the most probable causes for the underwhelming perfor-
mance of the classifier on the 12-classes task, which was derived from further reflection

54

Chapter 3. Challenges of Embedded Real-time Music Information Retrieval

Table 3.3: Summary of the results of Task C.

Class Precision Recall F1-score
Kick 82.1% 76.7% 79.3%
Snare-A 78.3% 66.7% 72.0%
Tom 64.7% 39.3% 48.9%
Snare-B 78.3% 60.0% 67.9%
Bending 55.7% 42.8% 48.4%
Hammer-on 48.0% 48.8% 48.4%
Nat.Harmonics 69.7% 50.9% 58.8%
Palm Mute 61.1% 82.0% 70.0%
Bridge-Pick 67.2% 59.8% 63.3%
Soundhole-Pick 49.4% 52.6% 51.0%
Staccato 60.4% 71.2% 65.3%
Vibrato 48.5% 41.6% 44.8%
Macro avg. 63.6% 57.7% 59.8%
Accuracy 56.5%

on the system:

1. Simplistic Technical Choices: We deliberately adopted a simplistic ap-
proach to support the discussion on challenges and potential solutions enter-
tained in the previous sections and [80]. However, this classifier served as a
starting point for our expressive guitar technique recognition project. Never-
theless, the following technical choices should be more deeply investigated:

(a) Onset Detection: The onset detector used in the pipeline was manually
optimized, and its performance was evaluated on a small labeled subset
of the dataset. As a result, the training set contained a few false posi-
tive detections. In particular, onset detection proved to be more difficult
with pitched sounds, which caused a lower detection accuracy with those
techniques. Another result of naive parametrization of the onset detector
is that the variability of the detection latency was higher than desired,
making it difficult to properly align the feature extraction window with
the actual onset. As a result, in some cases, the actual onset would be
excluded as the window started from a slightly later point in time, while
in others the onset was properly included, but some pre-onset noise was
too. Additionally, the post-onset delay was overestimated based on the

55

3.6. Expressive Guitar Technique Classifier

theoretical onset detection latency: using the actual measured TOD would
allow for better alignment of the feature window. Preliminary results at
this point showed that a more proper parametrization that could yield a
lower latency variability can improve the classification accuracy.

(b) Feature Selection: the small and efficient FFNN showed that feature se-
lection was beneficial to the performance of the models. However, here
we resorted to a manual trial-and-error selection process, which was only
informed by the results obtained and previous research. A more proper
feature selection mechanism can help the performance.

(c) Single-dimensional description: Due to the small size of the feature win-
dow (i.e., 1024 samples, 20.33 ms) we used the entire window as the buffer
and hop size of most windowed feature extractors, resulting in a mono-
dimensional feature vector for each note. This is convenient as simple and
efficient FFNNs or 1D CNNs can be used to perform classification, but this
cannot describe feature variation along the time axis. A more advanced
approach would be to capture a number of smaller windows in the analysis
buffer, therefore obtaining a 2D feature matrix for each note. Classifying
such a feature matrix would require a different neural network, such as a
CNN or RNN.

(d) Neural network: A more in-depth optimization of the neural network hy-
perparameters would yield better results. In particular, the addition of
more regularization layers such as batch normalization showed promising
results in later studies.

2. Pitched Techniques: The classification of all the pitched techniques in the
dataset has proved to be significantly more complex than distinguishing the
sole percussive sounds. This can be attributed to the higher variability in
pitch, loudness, and arguably timbre that is possible with notes played on the
string. In fact, the same technique played on an open string or the 17th fret
would retain only some of its sonic characteristics even to our ears, while pitch
and timbre will change to different extents. As a result, the brief section of
sound captured for classification at the beginning of notes may either (1) not
be enough to distinguish complex pitched techniques or (2) require more refined
technical tools, features, and machine learning approaches to extract such high-
level information.

56

Chapter 3. Challenges of Embedded Real-time Music Information Retrieval

3. Attack-based approach: Due to the nature of the real-time system we had in
mind when starting this project (i.e., an advanced real-time guitar synthesizer)
we adopted a classification approach that focuses only on the very first mil-
liseconds of each note, therefore its attack phase. However, not all expressive
guitar techniques are attack-based. Namely, bending, staccato, hammer-on,
and vibrato are techniques that produce their characteristic effect after the at-
tack phase (or the first attack in the case of hammer-on). Properly classifying
these techniques would require defining a new classification framework where
attack-based classification can be later refined whenever a note morphs from a
base technique to a bend, vibrato, or other.

Further considerations on the conclusions drawn from these points, and the di-
rections followed after this study, are reported in the final summary of the chapter
(Section 3.7).

Classification Latency

Measuring precisely the end-to-end latency of the classification pipeline would require
feeding the embedded computer with a prerecorded guitar signal, and having the
classifier produce a clear signal mark when classification is completed. Each test
would require the recording of both the input and output signal and each onset and
mark in the signal would need to be hand-labeled. This would allow for a precise
measurement of the delay introduced by the software between onsets and classification
results. Such a technique was employed in a later study (see Chapter 6).

For simplicity in this demonstrative case, we used an approximate measurement
setup. First, the delay between each onset and its detection (Onset detection latency)
was conducted independently on 211 individual notes, approximately 100 percussive
sounds, and 100 pitched notes. Actual onsets and detection times were labeled and
the latency, i.e., the difference between each couple of timestamps, was recorded.
The average onset detection latency measured was 19.00 ms. It is important to note
that the latency of detection depends on the parameters of the onset detector, its
internal buffer, and the type of input sounds, and is different from the execution time
of the detector itself. The execution time of the detector is considerably shorter than
the 1.33 ms time-budget of our real-time system (64 samples at 48 kHz), hence the
detector was executed at each call of the audio processing routine (see Figure 3.1).

Conversely, all the remaining delays (TPOD,TFE,TDNN, see Figure 3.6) were mea-
sured inside the classification software in real-time using a high-precision timer. This

57

3.6. Expressive Guitar Technique Classifier

is possible because all the time instants after the actual onset can be probed and
measured in the software, whereas the real onset can only be estimated by the de-
tector (hence why TOD was measured separately). These measurements were taken
by playing 200 notes (100 percussive and 100 pitched) with the guitar connected to
the system, and the results from each timer were saved in a log file. These delays
included the post-onset delay, the feature computation time, and the inference time
of the classifier (as shown in Fig. 3.6). On average, the post-onset delay was 7.77 ms,
the feature computation time was 0.78 ms, and the inference time of the classifier
was 3.15 ms. The individual latency distributions are represented in Figure 3.10.
The sum of all the delays apart from TOD is 11.70 ms. The approximate nature of
the latency measurement is only present when summing these delays with TOD. As
an indicative measure, the sum totals at 30.7 ms. The following studies adopted a
precise latency measuring approach (see Chapter 6).

Figure 3.10: Distributions of the TPOD, TFE, and TDNN delays showing small variance
around each mean.

It is with noticing that the neural classifier was deployed to the embedded imple-
mentation using TFLite7 out of simplicity since the models were trained with Keras

7https://www.tensorflow.org/lite

58

https://www.tensorflow.org/lite

Chapter 3. Challenges of Embedded Real-time Music Information Retrieval

and TensorFlow. However, at the time this demonstrative classifier was developed,
it was not clear whether different IEs (i.e., libraries for neural network execution)
would yield a similar execution time or if the TDNN could be further reduced with a
more efficient alternative to TFLite. This was further investigated in a subsequent
study, which is presented in Chapter 5.

Nevertheless, the system was connected to the guitar for real-time performance
and accompanied by a simple sinewave synthesizer, which was triggered with a dif-
ferent frequency each time that classification was completed. The delay between the
guitarist’s actions and the synthetic tone was found to be hardly perceivable when-
ever playing the guitar, indicating that a smart guitar could use a similar system to
trigger different synthetic sounds based on the player’s technique. Some conclusions
on the subsequent direction of the research project are described in the next section.

3.7 Summary

This chapter delved into the challenges of developing embedded real-time Music Infor-
mation Retrieval systems for music signals. These challenges include the constraints
of having access to only past and current input data, the delicate tradeoff between
system accuracy and latency, real-time audio deadlines, real-time-safe programming
principles, and the limitations of embedded hardware and low-level software. Addi-
tionally, we illustrated some of the tradeoffs and solutions to these challenges through
the implementation of a real-time embedded expressive guitar technique classifier.
The classifier was successfully deployed on a Raspberry Pi 4.

The practical implementation achieved an accuracy of 99.2% in distinguishing
pitched and percussive techniques, along with an average accuracy of 99.1% in dis-
tinguishing four distinct percussive techniques, alongside a fifth category dedicated
to pitched sounds. Conversely, the task of classifying the full set of twelve different
techniques proved to be more difficult, and our proposed approach did not obtain sat-
isfactory results. Nevertheless, the classification pipeline with the models for Task A
and Task B was successfully integrated into a Raspberry Pi 4 with Elk Audio OS,
and the classification outcomes were generated with an average latency of roughly
30.7 ms from the note onset, a delay that was hardly perceptible.

The solutions demonstrated by the experiment include the possibility of breaking
down the classification into a stepwise pipeline, each operating at different rates,
fine-tuning the system latency, leveraging a real-time embedded operating system to

59

3.7. Summary

achieve optimal performance on resource-limited devices, and employing real-time-
safe coding practices.

However, the demonstrative classifier is limited in several ways. In particular, we
focused on an attack-based real-time classification approach, and we assembled the
classifier here as a minimum viable example for the solutions discussed above, which
leaves space for better technical choices and tools. Additionally, we adopted a simple
approach with a FFNN classifying 1D feature vectors extracted from the feature
window. In summary, we found that this research could develop in two different
directions in future studies:

1. The classification framework and pipeline can be redesigned from the ground
up to include non-attack-based techniques.

2. The problem can be restricted to the attack-based techniques and the classifi-
cation pipeline can be refined given the large margins of improvements left by
the simple approach adopted here.

We opted to follow the second alternative since we found that most of the non-
attack-based techniques can be detected through pitch and envelope tracking (i.e.,
pitch bending, vibrato). In particular, when thinking about the use of a technique
classification system in the context of an advanced guitar synthesizer, it is clear how
some of the pitch and envelope-based techniques such as bending, vibrato, and stac-
cato, would not require classification because the pitch tracker and envelope followers
integrated into guitar-synthesizer instruments and pedals can already carry these
expressive traits over to the synthetic sound.

Furthermore, the refinement of the current pipeline leaves space for interesting
problems to solve. Namely, defining a real-time aware optimization for onset de-
tectors, refining feature selection, improving the neural classifier, determining the
possibilities and performance of different inference libraries for neural networks on
embedded computers, and ultimately aiding the deployment of deep audio models
in general on embedded computers. For this reason, the following chapters will dis-
cuss subsequent works dedicated to the optimization of onset detectors (Chapter 4),
the evaluation and comparison of the performance of embedded IEs for deep learning
(Chapter 5), an improved expressive guitar technique recognition system with a more
in-depth analyisis of the problem (Chapter 6), and the development of a standard
procedure to deploy neural networks for real-time inference on embedded computers
with Elk Audio OS (Chapter 7).

60

Chapter 4

Bio-inspired Optimization of Paramet-
ric Onset Detectors

Onset detectors are used to recognize the beginning of musical events, such as notes,
in audio signals. Onset detectors that rely on an onset function and peak picking stage
expose a series of parameters that can be adjusted to optimize the performance of the
algorithm, in terms of how accurate and quick the detection is. However, manually
adjusting parameters for these detectors can be a time-consuming task. While there
are existing automated approaches, these often only focus on maximizing a single
metric that reflects the quality of detection, in terms of accuracy, f1-score, or similar.
These approaches can be successfully applied to offline detection systems. However,
more complex scenarios require considering multiple competing metrics and finding
a suitable tradeoff. In particular, real-time systems that integrate onset detection
cannot tolerate optimal detection accuracy at the cost of high detection latency,
and conversely, a very low latency parametrization could not justify poor detection
accuracy.

To address this issue, we proposed a flexible optimization algorithm that takes
into account multiple objective metrics. Our procedure employs a bio-inspired evo-
lutionary computation algorithm to replace costly grid search algorithms or manual
parameter tuning. In the proposed approach, multi-objective optimization is achieved
by computing the Pareto frontier, composed of the non-dominated solutions in the

61

4.1. Introduction

space defined by two competing metrics.

The proposed approach was evaluated on all the onset detection methods of the
Aubio library, using a dataset of monophonic acoustic guitar recordings. Results show
that the proposed solution is effective in reducing the human effort required in the
optimization process: it replaced more than two working days (i.e., 16 man-hours) of
manual parameter tuning with 13 hours and 34 minutes of automated computation.
Moreover, the resulting performance was comparable to that obtained by manual
optimization.

This chapter discusses the contribution presented at the 24th International Con-
ference on Digital Audio Effects [135].

4.1 Introduction

Audio Onset Detection (OD) is the process of identifying the beginning of musical
notes within audio signals and is commonly utilized for tasks such as automatic music
transcription, beat tracking, acoustic event classification or to improve how many
standard audio effects adapt to the signal [111]. Additionally, it plays a vital role
in many interactive music systems [136], especially novel SMIs [25] where embedded
intelligence can be used to extract information at the note level. In OD research
and practical use, two principal application scenarios can be identified: offline OD
and real-time OD. Offline OD is well-suited for music database analysis, where the
recognition algorithm processes entire audio recordings, and detection time is not
a critical factor. On the other hand, real-time OD operates continuously on an
audio stream, and it is often required to perform detection within predetermined
time constraints, in order for the detection to trigger subsequent analysis or synthesis
algorithms with an imperceptible delay. As previously discussed in Chapter 3, in real-
time detection, algorithms can only analyze the portion of the audio signal available
at a given time and the preceding historical context (i.e., causal information), and
they cannot peek into future audio segments without introducing latency between
onsets and their detection.

Historically, a large part of OD research has focused on offline applications [122,
137,138], along with real-time scenarios with generous time constraints [125]. Various
probabilistic methods, including deep learning approaches, have been developed for
these purposes, typically running on high-powered computers or PCs. However, less
attention has been directed towards the development and utilization of OD meth-

62

Chapter 4. Bio-inspired Optimization of Parametric Onset Detectors

ods designed explicitly for real-time scenarios, capable of functioning on resource-
constrained embedded devices such as Raspberry Pi or BeagleBone Black single-board
computers [139]. Such methods are particularly relevant for applications within the
emerging field of SMIs [25], enabling the repurposing of information extracted from
the signal with imperceptible latency for the player (see, e.g., [136]).

Deterministic OD algorithms are suitable for these applications, requiring less
computational resources than existing neural network-based methods [122,125]. They
align well with the limitations of embedded devices. However, most deterministic OD
algorithms necessitate precise parameter tuning to achieve high recognition accuracy.
Moreover, different choices of parameter values affect the delay with which an onset
in the signal can be detected (i.e., recognition latency). The tuning process, which
can be conducted through manual adjustments or grid search, entails evaluating
the detector’s performance across various parameter values using a designated test
dataset of audio recordings. Both manual tuning and grid search are time-consuming
and often impractical. In particular, grid search is inefficient as it consists of testing
all the combinations of parameter values within predefined ranges and at specific
intervals. In this way, grid-search cannot automatically steer the search toward areas
of the parameter space that are more likely to be a minimum or tune how fine the
intervals between parameter values are. Differently, manual optimization can help
direct the search toward a global minimum, but it is time-consuming. Additionally,
due to the prevalence of offline applications, automated solutions used in research
often optimize a single objective function (e.g., detection accuracy), while real-time
applications require the optimization of multiple metrics (i.e., detection accuracy and
latency).

In [135], we proposed an approach to automated parameter tuning and perfor-
mance evaluation of time-constrained real-time onset detectors, which can be applied
to any parametric OD tool with minor modifications. To optimize detector parame-
ters, our approach employs an Evolutionary Computation (EC) algorithm that mod-
els solutions (i.e., any set of parameter values) as individuals within a population
and parameters as genetic material. The EC population undergoes iterative updates
through operations inspired by natural evolution, including selection of the fittest,
reproduction, mutation of genetic material, and generational replacement. Selection
steers the evolution towards a predefined goal by enabling the fittest solutions (ac-
cording to a fitness function) to participate in reproduction and mutation processes,
ultimately generating better solutions. Moreover, the proposed method is suitable

63

4.2. Background

for multi-objective optimization.
We applied this proposed procedure to the OD algorithms of the free and open-

source Aubio library, aiming to optimize the detector for a real-time timbre recog-
nition method focused on acoustic guitars. The target system’s objective was to
detect each onset in the audio signal, which in turn triggered a classifier to identify
the expressive playing techniques employed by the guitarist. The classification re-
sult would then be repurposed in real-time to trigger the synthesis of new sounds.
Given that complex sequential sounds tend to be perceived as simultaneous when
separated by less than 30 ms [21], this interval was set as the maximum end-to-end
latency for the recognition and repurposing system. A maximum target latency of
20 ms was allocated to the timbre recognition algorithm alone (thus excluding sound
generation), which can be split between OD, feature extraction, and classification.
Measuring the last two tasks on our pipeline resulted in a consistent 6 milliseconds
execution time, resulting in a maximum latency of 14 ms that could be used by the
OD task. Additionally, we aimed for low variability in detection latency across dif-
ferent sounds, allowing for accurate estimation of actual onset times (see, e.g., [139]).
This is particularly relevant as it allows a subsequent feature extraction algorithm in
the pipeline to accurately align the extraction window with the onset of the relative
note, thus helping pre-onset noise.

The following is the outline of the remainder of this chapter. Section 4.3 describes
the proposed method for multi-objective optimization of onset detectors. Section 4.4
reports the evaluation of our method and a discussion of the results. Finally, we
summarize the work and draw our conclusions in Section 4.5.

4.2 Background

4.2.1 The Aubio library

The Aubio library [128, 140] is a free and open-source library for audio and music
analysis. Since the first version of Aubio, numerous improvements and algorithms
were added to its functionalities 1. At the moment of writing this, the latest ver-
sion is 0.4.9. One of the most relevant additions is that of Adaptive Whitening2.
The Adaptive Whitening technique proposed by [123] is a method for preprocessing
spectral frames to improve performance in real-time onset detection. It does so by

1https://github.com/aubio/aubio/releases
2Added in Aubio version 0.4.5 https://aubio.org/pub/aubio-0.4.5.changelog

64

https://github.com/aubio/aubio/releases
https://aubio.org/pub/aubio-0.4.5.changelog

Chapter 4. Bio-inspired Optimization of Parametric Onset Detectors

normalizing the magnitude of each frequency bin in STFT frames with respect to a
recent maximum value for the bin. This reduces the effect of spectral roll-off and
can account for variations in the dynamic of the audio signal. However, while Adap-
tive Whitening improves the performance of various onset functions, it was shown
to have a detrimental effect on the Modified Kullback-Leibler (MKL) distance for-
mula [140, p. 42, formula 2.9]. Other whitening techniques were proposed throughout
the years, such as approaches based on the Discrete Wavelet Transform [141].

The onset methods that are available in the Aubio library are:

1. energy: Energy-based distance, which calculates the local energy of the input
spectral frame.

2. hfc: High-Frequency content [142], which computes the high-frequency content
of the signal (See Equation A.1).

3. complex: Complex domain OD function [143], which uses information in both
frequency and phase to determine changes that can correspond to musical onsets
(See Equation A.2).

4. phase: Phase-based OD function [144] (See Equation A.3).

5. specdiff: Spectral difference OD function [145].

6. kl: Kullback-Leibler OD function [146] (See Equation A.5).

7. mkl: Modified Kullback-Leibler OD function [128, Chapter 2] (See Equa-
tion A.6).

8. specflux: Spectral flux [147] (See Equation A.7).

While current efforts in OD research focus on probabilistic and data-driven solu-
tions such as neural networks [122,125,137,138], deterministic OD methods still guar-
antee to be able to run within tight time constraints for real-time detection. Moreover,
methods are also less computationally expensive than most neural network counter-
parts (see e.g., [122,125]), which is an essential requirement for resource-constrained
embedded devices.

Similar libraries with Onset detection algorithms (e.g., Essentia3 [148], Librosa
[149], Madmom [150]) offer a very similar selection of deterministic OD methods, with

3http://essentia.upf.edu

65

http://essentia.upf.edu

4.2. Background

the sole exception of some advanced methods (e.g., SuperFlux [151]). Nevertheless,
the proposed method could be applied to a wide range of methods and libraries since
it does not make any assumption on how the onset detection algorithm works (e.g.,
whether it is a straightforward function or a complex neural network).

4.2.2 Evolutionary Computation

EC is a family of optimization algorithms that are inspired by natural evolution.
These algorithms model candidate solutions as a population of individuals. Each
solution, or individual, is defined by the counterpart to genetic information, which
in the case of EC algorithms is a set of values. The information that composes
each individual is called genotype. The population, initially composed of random
solutions, undergoes many stages of evolution, called generations, where the fittest
individuals are selected for reproduction, their genome is randomly mutated, and
they are eventually replaced by their offspring.

The fitness of an individual in EC algorithms is effectively the objective metric to
either minimize or maximize, depending on the optimization problem. The strength
of EC is in how the fitness function can be any function, from a simple mathematical
distance or metric, or a complex metric that relies on software simulations of the
evaluated solution. The evolutionary process explores the optimization landscape
and searches for the global optimum.

The exploratory nature of EC algorithms lends itself well to creative areas of
music research, such as generative audio synthesis and algorithmic composition. A
common use of evolutionary algorithms in sound synthesis is to tune the parameters
of a synthesizer to match target sounds (see [152,153]).

Along these lines, Garcia [154] proposed the use of evolutionary optimization to
suggest topological arrangements for the functional elements of a sound synthesis
algorithm, as well as to optimize the parameters of these elements. Garcia’s solution
and many other EC approaches employ a fitness function in the form of a mathemat-
ical equation (e.g., a distance function between the sound generated by a candidate
solution and a target sound). However, EC does not pose particular requirements on
the fitness function itself. As an example, Johnson [155] devised an interactive EC
system to explore the sound space of a synthesizer. In the system proposed by the
author, users were presented with nine candidate sounds at a time and asked to rate
each one. The rating was followed by a round of the evolution process, where the
rating for each sound was treated as the fitness function result, effectively involving

66

Chapter 4. Bio-inspired Optimization of Parametric Onset Detectors

humans in the fitness function evaluation.
The same flavors of EC approaches (i.e., algorithmic fitness or interactive evalua-

tion) were taken in the field of evolutionary music composition, where some authors
defined specific composition goals along with a fitness function (see e.g., [156, 157]),
while others embrace the interactive approach with a user-evaluated fitness function
(see [158,159]).

Nevertheless, EC have also been used on occasion for parameter tuning in the
field of MIR. Vatolkin et al. [160] applied an EC algorithm to the optimization of
feature selection for a musical instrument classifier. The approach proposed by the
authors consists of using the performance of the machine learning classifier as a
fitness function. Such an application shows how EC algorithms can perform well in
the absence of a derivable objective function for the problem. The same advantage is
shown by Faragó et al. [161] who successfully applied EC to the design of the sound
processor for a hearing aid. Similarly, Pepe et al. [162] applied two different EC
algorithms to multichannel audio equalization, where optimization was used to tune
filter parameters and match a desired frequency response.

Finally, while research on EC for musical onset optimization is scarce, there have
been several successful applications of these algorithms to the problem of Electromyo-
graphy onset detection for muscle activation analysis. Some examples are the work
by Rashid et al. [163] and Magda et al. [164]. Even though electromyographic OD
is a different task than musical OD, the two problems show similarities in how they
expose simple parameters to tune and how the fitness evaluation can be performed
(in terms of detection accuracy).

The EC optimizer proposed in the present study was developed using the In-
spyred Python library4 [165], which provides a wide range of bio-inspired algorithms,
including EC and swarm intelligence.

4.3 Proposed method

We proposed a procedure for the optimization of parametric onset detectors that
considers both the accuracy of the detection and its latency (i.e., the delay between
an onset in the signal and its reporting). The multiobjective optimization method
proposed can be summarized with the following six steps:

1. Dataset preparation: a dataset of audio recordings from the target applica-
4https://pythonhosted.org/inspyred/overview.html

67

https://pythonhosted.org/inspyred/overview.html

4.3. Proposed method

tion must be created and onset times must be annotated. The dataset is then
split into validation and test sets;

2. Fitness function preparation: devise an evaluation algorithm that, given a
set of parameter values for the onset detector, can execute the detector on the
validation set and compute the metrics of interest (e.g., accuracy, f1-score, or
maximum/average/variability of the detection latency);

3. Parameter separation: First, identify potential parameters with problem-
dependent values (fixed parameters, e.g., minimum inter-onset interval). Sub-
sequently, distinguish the parameters that determine the latency of the com-
putation (we will call these A-parameters) from those that do not and can be
tuned independently without affecting detection latency (B-parameters);

4. Evolutionary Optimization for single-objective: Run the proposed EC
algorithm on each combination of A-parameters, with the B-parameters as the
genotype of the individuals in its population. The fitness of each solution is
evaluated on the validation set by the algorithm devised for Step 2, and the
evolution is performed for a set number of generations;

5. Pareto front computation (multi-objective step): For each final solution
(i.e., the best solutions for each combination of A-parameter values), compute
the set of non-dominated solutions that compose the tradeoff curve (i.e., the
Pareto front) between the two metrics of interest (e.g., accuracy and latency);

6. Solution Selection: Since all the solutions in the Pareto front are viable
tradeoffs between the two objectives, a suitable solution must be chosen from
this set. The choice can depend on the shape of the front and the application
requirements. The selected solution, which is a set of parameter values, can
then be evaluated on the test set to obtain a final estimate of its performance.

The following sections describe each step of the proposed method in detail. The
details on the evaluation of the method on our problem are discussed in Section 4.4
instead.

4.3.1 Dataset Preparation

The first step involves preparing a dataset of audio recordings and providing quality
annotations of each onset. The datasets used for optimization can be a subset of a

68

Chapter 4. Bio-inspired Optimization of Parametric Onset Detectors

larger dataset, reducing the time required for labeling and making it possible to check
the quality of the labels for each onset sound. To extract a subset that maintains
the characteristics of interest of the original dataset (e.g., distribution of different
types of sounds), stratified random sampling can be used. Then, all the onsets in
the sampled set have to be labeled, meaning that one or multiple files with the
timestamp of each onset have to be created. The time resolution of the labels can
vary depending on the application of interest and the labeling process can be carried
out with the help of annotation software. Audacity5 and Sonic Visualizer6 [166] are
two pieces of free and open-source software that enable annotation of audio tracks.
In these programs, the time accuracy of the labels can be adjusted by tuning the
zoom level with which the audio signal is visualized. When using both the signal
and spectrogram for reference, the parameters of the spectrogram should be tuned
to reduce the size of the analysis frame, thus increasing time accuracy at the cost of
a reduced resolution of the frequency axis. Figure 4.1 shows the resolution settings
for the spectrogram. Additionally, the range of the vertical axis in the waveform
visualization of the signal should be set low enough to include quiet sounds, but to
exclude noise where possible (see Figure 4.2). Figure 4.3 shows an annotated onset in
Audacity, with the side-by-side view of the waveform and spectrogram. Furthermore,
the same recordings can be labeled by more than one annotator to reduce potential
errors, as suggested by Brossier [128, p. 52].

The labeled dataset can then be divided into a validation set and a smaller test
set: the first will be used to drive the optimization process, while the second will be
used to test the generalization performance of the final solution. The dataset used
for this study is described in Section 4.4.1.

4.3.2 Fitness Function

The second step involves the development of a fitness function, which is the objective
measure that will drive the optimization towards the best solution. The input of the
fitness function should be one solution (e.g., in this case, a value assignation for each
parameter of the onset detector) and the output should be multiple measures of the
success of the onset detector on the input data. It is worth noting that the fitness
function does not need to be differentiable and can even be a black-box program.

To measure the degree of success of detection, we can define a tolerance win-

5https://www.audacityteam.org/
6https://www.sonicvisualiser.org/

69

https://www.audacityteam.org/
https://www.sonicvisualiser.org/

4.3. Proposed method

Figure 4.1: Resolution settings for the spectrogram view for onset annotation on
Audacity.

dow around each hand-labeled onset and consider correct detection (or True Positive
(TP)) any detection that falls within said window [128, Chapter 2.5.2]. In addition
to correct detections, errors can be further divided into False Positives (FPs) and
False Negatives (FNs): the former are onsets that are detected outside a tolerance
window, while the latter describes true onsets that have not been detected. Duplicate
detections (more than one onset detected in the same window) can either be counted
separately or considered as FPs (except for the first correct detection). Additionally,
the f1-score is a metric that takes into account both correct detections and errors.

F1 = 2× Precision×Recall

Precision+Recall
(4.1)

The f1-score is defined as the harmonic mean of Precision and Recall (Eq. 4.1)., where
Precision is the ratio of correct detections to the number of onsets reported by the
detector (Eq. 4.2), while Recall is the ratio of correct detections to the number of

70

Chapter 4. Bio-inspired Optimization of Parametric Onset Detectors

Figure 4.2: Range of the signal visualization on Audacity.

labeled onsets (Eq. 4.3).

Precision =
TP

TP + FP
(4.2)

Recall =
TP

TP + FN
(4.3)

To measure the latency of the detector instead, it is sufficient to measure all
the time intervals between correct detections and the relative ground-truth label.
Subsequently, a single statistic of interest can be taken to represent the distribution
of the detection latency, such as the maximum value, mean, or variance. However,
while in practice we computed the distribution of detection latency at this stage,
the proposed procedure consists of the execution of an EC algorithm with a single
objective (maximization of the detection f1-score) for parameters that do not impact
latency, and a subsequent step of multi-objective optimization (see Section 4.3.5).

4.3.3 Parameter Separation

The third step involves dividing the parameters of the detector into three distinct
categories:

1. Fixed-parameters;

71

4.3. Proposed method

Figure 4.3: Annotated onset in Audacity with the time zoom set so that the time ruler
ticks are one millisecond apart.

2. Free A-parameters ;

3. Free B-parameters.

Fixed parameters are parameters whose values depend on the problem and cannot
be subject to tuning or optimization. One example can be the minimum inter-onset
interval present in many onset detectors [128]. The minimum inter-onset interval
is the duration of the time interval for which the detector is disabled after each
detection. Such a mechanism is used to prevent the high energy of the signal at
the onset moment from causing repeated detections (i.e., false positives). The value
of the minimum inter-onset interval can be dependent on the problem and can be
defined, for example, by determining the fastest reasonable playing pace for the target
instrument or defining the fastest playing pace for which we desire the detector to
consider multiple onsets as distinct entities.

Free parameters are divided into those that affect both latency and detection
accuracy (i.e., A-parameters) and those that only affect accuracy (i.e., B-parameters).
This is done so that multiple combinations of A-parameters can be selected, each
constituting a single-objective optimization problem on the remaining B-parameters.
Each subproblem can be solved independently (and in parallel), and then a multi-
objective optimization step can be performed, taking into account both detection

72

Chapter 4. Bio-inspired Optimization of Parametric Onset Detectors

accuracy and latency.

4.3.4 Evolutionary optimization for single-objective

This step of the proposed procedure involves optimizing the B-parameters for ev-
ery combination of the A-parameters. For this task, we employ an EC algorithm
since this class of optimization methods requires no assumption on the problem or
the input parameters (black-box optimization). EC algorithms model the candidate
solutions of an optimization problem as individuals of a population and evolve such
population through multiple generation rounds using operations that are inspired by
natural evolution. In each generation round, the fittest individuals of the population
according to an objective fitness metric are selected for breeding, which leads to the
creation of a number of new individuals (i.e., offspring) to promote the recombination
of good solutions. Then, some individuals can be subject to mutation, which alters
the nature of the solutions to promote exploration of the search space. Finally, the
population is replaced, either entirely or partially by the offspring. After replacement,
the evolution procedure can start with a new generation.

The individuals of the population of an EC algorithm are defined by their genotype
and phenotype. The genotype of an individual is a parameter configuration for the
algorithm to optimize, i.e., a set of values, containing a value for each parameter of
the problem. The phenotype is instead the manifestation of the genotype, which in
this case is the algorithm with its candidate parameter configuration and its resulting
performance. The phenotype is what can then be evaluated, resulting in a measure
of the fitness of the solution (i.e., how close the solution is to a global optimum).
The evolutionary process can lead to an optimal solution through exploration of the
search space and refinement of good solutions, which get closer to global optima while
weak solutions do not survive.

The steps of a generic EC algorithm are shown in the form of pseudocode in Alg. 1
(inspired by [167]).

In the proposed method, the genotype is a vector of B-parameter values. The
phenotype is the performance of the detector of choice with the parameter values of
each candidate solution. The fitness function is a measure of said performance and
consists of the f1-score of the detection with respect to ground truth onset labels.
Selection, Crossover, Mutation, and Replacement strategies are further discussed in
Section 4.4.

73

4.3. Proposed method

Algorithm 1: Evolutionary Algorithm
Generate initial random population
while generation <= max_generation do

generation = generation+1
compute fitness of each individual
select individuals depending on their fitness
perform crossover with probability crossover_rate
perform mutation with probability mutation_rate
use replacement strategy to create the new population

end

4.3.5 Pareto Front Computation

The evolutionary optimization step is performed for each combination of A-parameters,
and it involves tuning B-parameters. For each combination of A-parameters, the EC
returns the single solution with the highest detection accuracy obtained on the vali-
dation dataset.

The following step is to take the set of solutions obtained through the EC al-
gorithm and compute the set of optimal solutions with respect to both the success
metric of choice (e.g., f1-score) and a measure of the detection latency (e.g., maxi-
mum value or variance). The optimal solutions are obtained by computing the Pareto
front, which is the set that contains all the solutions for which none of the objective
functions can be improved further, without reducing some of the other objective val-
ues [168]. Therefore, all the solutions in the front, which are called non-dominated
or Pareto optimal, are all acceptable, equally valid from an objective standpoint, and
offer different compromises between detection success and latency.

4.3.6 Solution Selection

The last step consists of selecting the single most desirable tradeoff between detec-
tion accuracy and latency among the optimal solutions in the Pareto front. Since all
solutions in the front are acceptable and equally valid with respect to the multiple
objectives, selecting a solution can depend on the shape of the front and the prob-
lem domain. Figure 4.4 is an example of a Pareto front between the f1-score and
maximum latency of a set of onset detectors and parameter configurations. Since the
f1-score must be maximized and the maximum latency minimized, the ideal solution
would be at the top left corner of the plot (highest f1-score, lowest latency). By con-
trast, any solution near the bottom-right corner has high latency and a low f1-score.

74

Chapter 4. Bio-inspired Optimization of Parametric Onset Detectors

Furthermore, any solution that is not part of the front performs worse than a solution
in the front. In this case, solutions 1 and 2 may have too low of an f1-score for the
problem. Additionally, the shape of this particular front highlights how there is little
change in f1-score between solutions 6 and 7, but the slight increase in performance of
solution 7 comes at the cost of a sizeable increase in latency. Without any additional
assumption on the problem, solutions 3, 4, 5, and 6 may seem the best candidates
as they describe a convex knee in the front shape towards the ideal optimum (i.e.,
the top left corner of the graph). However, depending on the application, extremely
low latency may be much more relevant than detection accuracy, meaning that the
latency of solution 1 could outweigh the decrease in accuracy from 2 and all the other
solutions in the front. Alternatively, the latency of solution 7 could still be within
reason, and it could be outweighed by its accuracy. Independently from the specific
final choice, the nature of the Pareto optimal front ensures that no other solution was
found to have both better accuracy and latency. Figure 4.5 shows a different front
with more concave areas. In this case, solution 2 has a marginally better f1-score than
1 with very little increase in latency, and 3 offers close to no advantage in f1-score
while showing quite a larger latency result. A similar reasoning holds for solution 4
when compared to 3 and 5.

75

4.3. Proposed method

Figure 4.4: Pareto front between the f1-score (to maximize) and maximum latency
(to minimize) of a set of onset detectors and parameter configurations. Each solution
in the front is non-dominated, which means that any other set of parameters results
in a point in the lower-right area (i.e., dominated area) defined by the curve.

76

Chapter 4. Bio-inspired Optimization of Parametric Onset Detectors

Figure 4.5: Additional example of a Pareto front between f1-score and maximum la-
tency (see Fig. 4.4). This case shows a front with more concave segments, highlighting
how solutions such as 3, 5, 6, and 7 may be easily discarded since there are neighbor-
ing solutions that greatly benefit one of the objective metrics without affecting sensibly
the remaining (i.e., solutions 2 and 4).

77

4.4. Evaluation and discussion

4.4 Evaluation and discussion

The proposed optimization procedure was applied to all the OD methods of the Aubio
library. The solutions found by the EC algorithm were compared to those obtained
by manually tuning the parameters. The source code is available online7.

4.4.1 Input data

The input data used is a representative sample of our dataset composed of individual
acoustic guitar sounds [28].

For the optimization of the onset detector, we extracted two samples as the val-
idation and test sets. The validation set consisted of a sample of 1328 individual
sounds that was extracted from the main dataset with stratified random sampling
to preserve the original distribution of samples for each playing technique, guitar,
guitarist, and dynamic level. The test set was composed of 336 sounds extracted in
the same way as the validation set. Finally, the onset times were labeled by one an-
notator with the open-source Audacity audio software, providing ground truth labels
for the evaluation of the detector. The data used for this study is publicly available
in the project repository.

4.4.2 Evaluation algorithm

Step 2 consists of developing a fitness function that can measure the success of the
onset detector on the input data. In addition to the fitness metric used in the single-
objective optimization step (i.e., f1-score), we opted to also compute the latency at
this stage.

Success was quantified using the average f1-score metric (Eq. 4.1) for each playing
technique in the dataset, considering as correct the first detection within a tolerance
window of 20 ms that follows each hand-labeled onset. The exact interval between
each onset label and its relative time of detection was measured. The latency distri-
bution for each parameter configuration is used at the later stage of multi-objective
optimization.

The evaluation program takes as input a set of parameter values for the detec-
tor and runs the aubioonset8 executable provided with the library. The aubioonset

7https://github.com/domenicostefani/BioInspiredOnsetDetection
8https://aubio.org/manpages/latest/aubioonset.1.html

78

https://github.com/domenicostefani/BioInspiredOnsetDetection
https://aubio.org/manpages/latest/aubioonset.1.html

Chapter 4. Bio-inspired Optimization of Parametric Onset Detectors

executable normally produces an output file with a list of onset times predicted by
subtracting a set time interval from the time of detection (i.e., predicted detection
latency), so it was modified to produce the list of the actual times at which onsets
are detected. The fitness evaluation program was devised to use different folders in
the disk for each instance so that it is possible to execute more instances in parallel.

4.4.3 Onset detector parameters

Step 3 involves distinguishing fixed parameters from free parameters, where the latter
are further divided into parameters that affect the detection latency (A-parameters)
and the remaining which only affect accuracy (B-parameters). The values of fixed
parameters are imposed by the requirements of the problem at hand. In this case, the
fixed parameters were the hop size and the minimum inter-onset interval. The
hop size is the number of samples between two consecutive analyses, and it determines
the rate at which detection is performed: a value of 64 samples was deemed adequate
for our problem (64 samples at 48000 Hz equals 1.33 ms) as it results in a rapid
update of the onset detector. The minimum inter-onset interval is the shortest time
interval between the onsets that the analysis can report, and it is used to avoid double
detections. A value of 20 ms for the minimum inter-onset interval was considered
appropriate since it matches the real-time latency requirement described in Section
4.1, and was found not to affect the detection of successive, reasonably quick, guitar
onsets. The size of the buffer and the algorithm used for detection directly influence
latency by determining the number of computations performed at each analysis, while
the silence and onset thresholds only modify the signal level considered as the noise
floor and how strong a peak must be in order to be considered an onset.

Contrary to fixed parameters, free parameters must be optimized and were further
divided into A and B-parameters. In the case of Aubio, A-parameters are the buffer
size and the OD function used. B-parameters are the silence threshold and the
onset threshold. Table 4.1 shows all the parameters of the detector.

4.4.4 Single-objective evolutionary optimization step

For step four, we selected a range of A-parameters, consisting of buffer size values
between 64 and 2048 samples (i.e., 64, 128, 256, 512, 1024, and 2048) and all 8
available onset methods, plus MKL with adaptive whitening disabled at initialization.
Each combination of A-parameter values requires the optimization of the remaining

79

4.4. Evaluation and discussion

Table 4.1: Summary of Aubioonset parameters with the range considered for opti-
mization, their category, and whether they affect directly the detection latency or not.

Aubio
Parameter

Optimization
Range Category Determines

latency

Hop size - Fixed Yes*

Min. i.o.i.** - Fixed No

Buffer size [64,2048] A-par. Yes

Method Aubio methods
(See Table A.1) A-par. Yes

Silence threshold [-60 dB, -30 dB] B-par. No

Onset threshold [0.1, 3.6] B-par. No

* Hop size affects the detection latency but it is not an A-parameter since it is constrained by
the problem requirements (fixed).

** Minimum inter-onset interval.

B-parameters to obtain the most accurate configuration (in terms of f1-score). Since
B-parameters do now affect latency, a single-objective optimization step (accounting
only for detection f1-score) can be performed for each combination of the remaining
free parameters.

Previous to the use of an automated optimization strategy, we manually selected
different B-parameter values and measured performance using the evaluator script
to further refine the parameter values and repeat the measurements. The manual
procedure followed can be defined as a coarse grid search, followed by a refinement
of the parameters near performance peaks in the search space. This technique was
used because the brute-force approach of a fully automated grid search was shown to
be either too coarse or too time-consuming. Manual optimization proved to be time-
consuming and required more than 2 workdays. Given the large amount of human
effort required and the limited scalability of the manual procedure, an automated EC
algorithm was used.

We used the Inspyred Python library was used to help the development of the
optimizer. Only a few modifications are necessary to adapt the base EC optimizer
structure of the Inspyred library to the specifics of our problem. In detail: the
individuals of the population were defined as vectors with two elements (i.e., silence
threshold and onset threshold). Moreover, the evaluator of the EC algorithm was

80

Chapter 4. Bio-inspired Optimization of Parametric Onset Detectors

set to call our custom fitness function (see Section 4.3.2). As a result, the fitness
metric used was the f1-score yielded by the individual’s parameter configuration. The
Inspyred library contains several standard evolutionary algorithms such as Genetic
Algorithm, Evolution Strategy, and Simulated Annealing as well as a custom EC
framework that allows different evolutionary operators to be composed. The custom
framework was used.

The different settings of the optimizer were refined through trial and error, re-
sulting in the following evolutionary operators and values:

• Population: 30 individuals, where each individual is a vector containing a
value for each B parameter. A greater number of individuals could increase the
possibilities for improving the solutions even with fewer generations, however,
it would require more execution time.

• Evolution termination: automatic termination after 30 generations. The
termination strategy can be defined by trying different values and evaluating
the fitness plots: if fitness keeps increasing over time the termination deadline
can be moved further away, while a stagnating behavior shows that termination
can happen earlier.

• Selection strategy: tournament selection with size 4, which holds a “tourna-
ment” by randomly sampling n individuals (4 in this case) and choosing the one
with the best fitness (see [169]).

• Crossover: Arithmetic and Laplace recombination operators (rate = 0.7),
which are common choices for combining good solutions when using real-valued
genotypes (see [170,171]).

• Mutation: Gaussian mutation operator, which adds a random value from a
Gaussian distribution to each element of an individual’s genotype to produce
a new offspring. The probability of performing the mutation (i.e., mutation
rate) was set to 0.7, while the mean and standard deviation of the Gaussian
distribution were 0 and 3.0 respectively. Mutation helps candidate solutions to
move away from potential local optima in the fitness landscape.

• Replacement strategy: Generational Replacement with elitism, meaning
that the entire existing population is replaced by the offspring at the end of
each generation, except for the best n solutions (in this case with 1 elite),

81

4.4. Evaluation and discussion

which survive if they are better than the worst n offspring. Elitism helps to
preserve the best individuals.

A summary is presented in Table 4.2, while Fig. 4.6 shows the algorithm procedure.
The parameters and operators for the evolutionary algorithm were obtained by testing
different combinations on a reduced number of generations for a quicker process.

Table 4.2: Settings used for the EC algorithm.

Setting Value

Individual genotype <Silence threshold, Onset threshold>

Population Size 30

Termination 30 generations

Selection strategy Tournament selection, size: 4 (see Section A.2.1)

Crossover Arithmetic crossover + Laplace crossover (see Sections A.2.2 and
A.2.3)

Mutation Gaussian mutation operator, mutation-rate: 0.7, mean: 0.0, and
standard deviation: 3.0

Replacement Generational Replacement with elitism, num elites: 1 (See Sec-
tion A.2.4)

Manual and Automatic optimization comparison

The automated optimization procedure was executed with 11 parallel instances on a
laptop with an Intel ® Core™ i7-10750H CPU. Since the execution time is directly
proportional to the buffer size of the detector, optimization instances were scheduled
so to distribute the load between parallel processes. The optimization instances for
the three largest values of the buffer size were scheduled on the first nine parallel
processes, while the remaining instances were executed on the last two processes (see
Fig. 4.7). The last process to terminate took 13 hours and 34 minutes from the
beginning of the optimization to termination.

The highest f1-score values obtained for each instance were comparable to the
results obtained by manual optimization. The f1-score was computed on the test
set to evaluate how each parameter configuration applies to new data. The mean of
the difference between the f1-score obtained in the test dataset with the EC and the

82

Chapter 4. Bio-inspired Optimization of Parametric Onset Detectors

MUTATION
Gaussian

CROSSOVER
Arithnmetic & Laplace

SELECTION
Tournament (s=4)

EVALUATION
Custom Script

TERMINATION
30 generation

REPLACEMENT
Generational + Elitism

INITIALIZATION
Random

Population: 30 individuals (candidate solutions)
Each individual: [silence_threshold, onset_threshold]

Figure 4.6: Flow of operations of the proposed evolutionary algorithm.

manual optimization process was 1.4 × 10−3 points and its standard deviation was
1.2× 10−2.

The performance gain of the results of the EC algorithm over manual optimization
is shown in Fig. 4.8 as the difference of the f1-score values in each instance (Eq.
4.4, 4.5, and 4.6). Table 4.3 then shows the best f1-score results obtained for each
optimization instance.

Gainb,m = ECF1scoreb,m −ManualF1scoreb,m (4.4)

b ∈ [64, 128, 256, 512, 1024, 2048] (4.5)

m ∈ aubio_onset_methods (4.6)

83

4.4. Evaluation and discussion

0 2 4 6 8 10 12 14
Duration (hours)

11
10
9
8
7
6
5
4
3
2
1

Pa
ra

lle
l p

ro
ce

ss

Parallel Ec executions
Buffer
 size

2048
1024
512
256
128
64

Figure 4.7: Parallel EC process schedule. Each stack of bars represents the execution
time of one of the parallel processes, while each individual bar indicates a single EC
optimization instance.

4.4.5 Multi-Objective Optimization

The result of step four is a set of solutions that are optimized for each combination of
A-parameters, while step the subsequent is to perform multi-objective optimization to
obtain the best overall performance in terms of both detection accuracy and latency.

The two main requirements for our target application are the following:

1. The maximum detection latency must be lower than 14 ms to comply with
the end-to-end 20 ms deadline defined in Section 4.1 for the timbre recognition
system. The system is composed of the OD algorithm and a classification

0.0025 0.0000 0.0025 0.0050 0.0075 0.0100 0.0125 0.0150
f1-score gain

F1-score gain (EC vs manual optimization)

Figure 4.8: F1-score Gain of the proposed EC algorithm results with respect to manual
tuning

84

Chapter 4. Bio-inspired Optimization of Parametric Onset Detectors

Table 4.3: f1-score values (percentage) of the best solutions obtained from the EC
algorithm for each combination of OD method and buffer size used. The highlighted
values are the non-dominated solutions of the Pareto front computed in Section 4.4.5
(Table 4.4).

Buffer size
64 128 256 512 1024 2048

M
et

ho
d

hfc 93.37 92.31 91.26 89.68 90.15 88.56
energy 94.10 94.20 94.80 94.82 95.58 91.63

complex 83.71 85.09 86.80 87.55 86.66 80.45
phase 76.20 82.34 87.40 82.06 74.26 71.62

specdiff 86.67 93.67 95.35 95.29 95.49 93.39
kl 85.17 86.16 87.95 87.52 89.19 82.41

mkl 84.84 85.90 87.22 86.96 88.18 88.14
specflux 84.49 91.75 92.43 91.21 87.97 86.82

mkl(noaw)* 95.18 97.08 97.42 97.38 97.30 96.30
* The MKL method with adaptive whitening disabled on initialization.

algorithm that consistently takes 6 ms to execute, hence the remaining time
interval of 14 ms that is assigned to the detection;

2. The variability of the latency distribution must be as low as possible. Thanks
to this, it will be possible to estimate the time of the actual onset with high
confidence by subtracting a fixed temporal interval from the detection time
(e.g., average or maximum detection latency).

In order to comply with these requirements, both the maximum latency and its vari-
ability were calculated. Maximum latency was expressed in the form of the upper
Tukey fence. Tukey fences [172] are values that define the range of a data distribu-
tion while ignoring data points that differ significantly from other observations (i.e.,
outliers). Tukey fences are commonly used to determine the position of box plot
whiskers and are computed using quartile values (i.e., Q1, Q2, Q3) and a constant k,
with a value of 1.5 for outliers [172] (Eq. 4.7).

TF =
[
Q1 − k(Q3 −Q1), Q3 + k(Q3 −Q1)

]
, k = 1.5 (4.7)

On average, 95.7% of the detected onsets were within the upper and lower fences
computed.

Onset detection latency was instead described with the Interquartile Range (IQR)

85

4.4. Evaluation and discussion

of the latency distribution. The IQR is a measure of the dispersion of a distribution
and it is defined as the difference between the third and first quartile values (Eq.
4.8).

IQR = Q3 −Q1 (4.8)

The IQR was used because, unlike variance, it is expressed in the same unit of measure
of the distribution data (milliseconds). IQR can also be multiplied by four in order
to find the interval between the upper and lower Tukey fences. Both Tuckey fences
and IQR are used to produce box plots, which are a common and clear method to
visualize many properties of a distribution.

As described in Section 4.3.5, the multi-objective optimization step consists of
computing the Pareto front of the solutions obtained in the previous step. The
Pareto front was computed using f1-score and latency IQR as objectives. All the
solutions whose maximum latency was greater than the threshold defined (14 ms)
were discarded.

The solutions are presented in Fig. 4.9 along with the Pareto front (dotted line)
and the discarded results. Discarded results are indicated by the larger red circle
markers in the upper right area. A more detailed view of the front is shown in Fig.
4.10 and the solutions are listed in Table 4.4.

Table 4.4: Solutions in the pareto front of figures 4.9 and 4.10, with f1-score as the
first objective and IQR of latency as the second.

Method Buffer
Size

f1-score
(%)

Low
Tukey
fence
(ms)

Latency
mean
(ms)

High
Tukey
fence
(ms)

IQR
(ms)

a specflux 64 84.49 2.2 3.8 5.3 0.80
b specflux 256 92.43 3.1 4.8 6.3 0.81
c mkl(noaw) 64 95.18 2.7 4.5 6.2 0.88
d mkl(noaw) 256 97.42 4.2 6.0 7.7 0.89

Differently, if low latency variability was not a requirement, the second objective
could be the minimization of the maximum latency. We show an example of the
Pareto front computed for f1-score maximization and maximum latency minimization
in Fig. 4.11.

86

Chapter 4. Bio-inspired Optimization of Parametric Onset Detectors

0.8 1.0 1.2 1.4 1.6 1.8 2.0
Latency IQR (ms)

0.75

0.80

0.85

0.90

0.95
F1

-s
co

re

Figure 4.9: Solutions of the EC optimization step represented in the space described by
the f1-score and the latency IQR objectives. The blue dotted line represents the Pareto
front that minimizes IQR and maximizes the f1-score, while the solutions represented
with the red hollow circles are the ones discarded because their maximum latency is
over the maximum value allowed (14ms).

4.4.6 Choosing a solution

By definition, the Pareto front contains all the best solutions that offer different
compromises on the two objectives. For this reason, any tradeoff belonging to the
Pareto front can be chosen depending on the problem requirements and the shape of
the curve.

For this problem, solution #d (Fig. 4.10, Tables 4.3 and 4.4) is chosen since it
provides the greatest f1-score value without having excessive latency IQR. Solution
#d was obtained with the MKL method, no adaptive whitening, a buffer size of 256
samples, a silence threshold of -51.7 dB, and an onset threshold of 1.18. On the test
dataset, solution #d obtained an f1-score of 97.33%, an IQR of 0.58 ms, an average
latency of 6.0 ms, and lower and upper Tukey fences of respectively 4.8 and 7.2 ms.
The performance of solution #d the test set shows that it generalizes to new data.

However, it is worth noticing that if the Pareto front had a different shape (e.g.,
more convex, more concave, or with a different slope) the chosen solution could be
different. In particular, the solution that has the best result according to one of the

87

4.4. Evaluation and discussion

0.80 0.82 0.84 0.86 0.88
Latency IQR (ms)

0.84

0.86

0.88

0.90

0.92

0.94

0.96

0.98
F1

-s
co

re

#a

#b

#c

#d

Figure 4.10: Closer view of the Pareto front shown in Figure 4.9.

objectives may not be the most desirable tradeoff. Section 4.3.6 presented possible
alternatives in the case of different Pareto front shapes.

88

Chapter 4. Bio-inspired Optimization of Parametric Onset Detectors

4 6 8 10 12 14 16 18 20
Max latency (Tukey Fence, ms)

0.75

0.80

0.85

0.90

0.95
F1

-s
co

re

4.5 5.0 5.5 6.0 6.5 7.0 7.5
Max latency (Tukey Fence)

0.80

0.85

0.90

0.95

F1
-s

co
re

#1

#2

#3
#4#5

#6 #7

Figure 4.11: Solutions of the multiple optimization instances, represented in an al-
ternative way to maximize f1-score while minimizing the maximum latency, instead
of its variability. These graphs are displayed to demonstrate alternative possibilities
for optimization, while the Pareto front in Figure 4.10 was used to select the final
solution.

89

4.5. Summary

4.5 Summary

In this chapter, we presented a procedure to optimize the performance of parametric
onset detectors for a set of data of interest. Our approach focuses on improving the
accuracy of detection and reducing the time delay, i.e., latency, between the actual
onset and its reporting.

We successfully applied our proposed technique to the onset detectors of the Aubio
library. An Evolutionary Computation algorithm was used to achieve automated op-
timization of the input parameters of each detector, and the Pareto front was used to
outline the set of best solutions. This method was compared to manual optimization,
proving to significantly reduce the amount of man-hours effort required while pro-
ducing comparable results. It can be argued that the proposed approach employed
an execution time that was not extremely dissimilar from the manual optimization,
especially when considering it along with the time required to develop the proposed
approach. However, it is to be noted that the entirety of the execution of the proposed
approach was automated and unsupervised, thus the notable reduction in valuable
man-hours. Furthermore, the proposed approach can be applied to new datasets very
quickly. In particular, the optimization code was made available online9.

When comparing the F1-score values obtained using the evolutionary computation
algorithm to those achieved through manual optimization, we observed an average
difference of 1.4 × 10−3 F1-score points with a standard deviation of 1.2 × 10−2.
Furthermore, the automated algorithm took 13 hours and 34 minutes to compute the
best results, while the manual procedure required over two working days of human
effort. By employing this approach, we managed to enhance the effectiveness of a
real-time onset detector significantly, while also reducing the time it takes to detect
onsets. These enhancements were evaluated using a separate test dataset.

Using only a subset of an audio dataset may pose limitations: the suggested
method could derive greater benefits from utilizing the entire dataset of interest.
However, this would result in increased human labeling and optimization time. To
accelerate optimization in such scenarios, the exploration could be narrowed down
to more pertinent parameter ranges. Moreover, the number of parallel optimization
instances could be increased, especially with a more powerful computer. A higher de-
gree of parallelism could also be exploited by allowing the evolutionary algorithm to

9https://github.com/domenicostefani/BioInspiredOnsetDetection

90

https://github.com/domenicostefani/BioInspiredOnsetDetection

Chapter 4. Bio-inspired Optimization of Parametric Onset Detectors

compute the fitness of more than one individual simultaneously, on multiple process-
ing threads. Additionally, we did not compare the proposed method with grid-search
algorithms, as they involve scanning a large number of combinations of parameters
without the ability to automatically focus the search on potential optima in the search
space. However, a comparison between the proposed approach and grid search would
further help clarify the strengths and drawbacks of the proposed method. Finally,
the optimization performance may be further improved by using fully multiobjective
EC algorithms, such as NSGA2.

The proposed procedure is expected to extend to any parametric onset detector
algorithm.

91

4.5. Summary

92

Chapter 5

Comparison of Deep Learning Infer-
ence Engines for Embedded Real-time
Audio Classification

Recent advancements in deep learning have demonstrated great potential for audio
applications, significantly surpassing the precision of previous approaches to tasks like
music transcription, beat detection, and real-time audio processing. Concurrently,
the proliferation of increasingly powerful embedded computers has led deep learning
framework developers to devise software optimized for executing pre-trained models
in resource-constrained contexts. Consequently, the use of deep learning on embedded
devices and within audio plugins has become more widespread. However, confusion
has been rising around deep learning inference engines (IEs), regarding which of these
can run in real-time and which are less resource-hungry. This chapter presents a com-
parative analysis of four deep learning IEs focused on real-time audio classification
on the CPU of an embedded single-board computer: TFLite, TorchScript, ONNX
Runtime, and RTNeural. The results show that all the investigated IEs compared
are capable of executing neural network models in real-time, provided appropriate
code practices are implemented. However, the execution times vary across engines
and models. Notably, the study reveals how most of the less-specialized engines offer
remarkable flexibility and can be effectively used for real-time audio classification,

93

5.1. Introduction

often yielding slightly superior outcomes compared to real-time-specific approaches.
Conversely, more specialized solutions present a lightweight and minimalist alterna-
tive, particularly suitable for use cases that demand reduced flexibility.

This chapter discusses one of the contributions presented at the 25th International
Conference on Digital Audio Effects [109].

5.1 Introduction

Deep learning has witnessed widespread adoption across diverse domains of data
processing and analysis, prominently within audio and music processing. Numerous
sound-related tasks have benefited from the successful application of deep learning
methodologies. For instance, deep learning has been effectively employed in mu-
sic tagging [173], beat detection [110], onset detection [125], instrument classifica-
tion [174], and more recently, in real-time audio processing [104]. Research in deep
learning for audio and music has often focused on offline learning, where deep learn-
ing models have substantially supplanted traditional machine learning approaches,
achieving superior accuracy and lower error rates. In contrast, real-time execution
of deep learning includes additional difficulties on the development part, in the form
of stringent real-time execution deadlines and the intrinsic time-consuming nature of
neural network executions, which often surpass the speed of conventional machine
learning counterparts.

In recent years, there has been a growing interest concerning the deployment of
deep learning algorithms in practical, real-world applications through the use of em-
bedded computers. This trend is particularly pronounced in the domain of real-time
audio processing, giving rise to the development of numerous embedded platforms tai-
lored for audio applications. Examples of such platforms include Elk Audio OS [24],
Bela [23], and Prynth [101]. These platforms have significantly contributed to ad-
vancing the capabilities and applications of real-time audio processing within the
domain of deep learning.

However, the requirements of deep learning and conventional frameworks can par-
ticularly stress the limited computational resources of even the most recent embedded
devices. This has led to a surge in the availability of deep learning IEs tailored for
embedded devices and single-board computers. Within the realm of deep learning,
terminology such as “inference engine”, “inferencing library”, or “runtime” are used to
refer to tools, specifically code libraries, capable of executing pre-trained neural net-

94

Chapter 5. Comparison of Deep Learning Inference Engines

works. These tools play a crucial role in deploying and leveraging pre-trained neural
networks effectively.

Some of these IEs derive from deep learning frameworks such as TensorFlow, Py-
Torch, and ONNX. Despite their availability, it is unclear whether they can safely
execute neural network models safely in real-time audio contexts. In these contexts,
it is imperative to avoid any operation that could potentially slow down or halt
audio signal processing. This uncertainty has led developers to devise their special-
ized approaches for deep learning inference in real-time audio (e.g., RTNeural [108],
and [104]). However, specialized approaches often suffer from limited flexibility. In
contrast, widely used deep learning IEs have the ability to load a wide range of neural
network models. Additionally, it is not clear whether the same exact model can be
executed more quickly with an IE than another.

In this chapter, we conduct a comparative analysis of four deep learning IEs for
real-time audio classification on an embedded CPU. Specifically, we evaluate Tensor-
Flow Lite (or TFlite, from TensorFlow, Google), TorchScript (from Torch/PyTorch,
Facebook’s AI Research lab), ONNX Runtime (from ONNX, Microsoft), and RTNeu-
ral [108]. We conduct a comprehensive comparison of these tools based on various
critical aspects including their compliance with real-time-safe programming princi-
ples1 [127], execution speed across multiple neural network models, utilization of
computational and memory resources, ease of use, and the quality of documentation.

Our evaluation focuses on CPU-based model execution, given that this is the pri-
mary viable option for readily available embedded SBCs. More often than not, these
devices are not equipped with a deep-learning-enabled GPU (i.e., a Nvidia CUDA
compatible GPU). The comparison of even more specialized approaches, such as the
use of TPUs, DPUs, and FPGAs, is outside of the scope of this study. We con-
ducted our comparison using a Raspberry Pi 4 single-board computer coupled with
Elk Audio OS, an open-source, real-time operating system optimized for low-latency
embedded audio processing. The Raspberry Pi has gained widespread usage in deep
learning, being supported by a multitude of inference engine developers. In addition,
Elk Audio OS enables low-latency audio processing thanks to its real-time capabil-
ities. The neural networks used for this comparison were tailored to classify eight
distinct expressive guitar techniques. The output of each of these models represents
a prediction of the technique used for each note, in the form of the distribution of
probability over all the classes. The code relative to this project was made available

1http://www.rossbencina.com/code/real-time-audio-programming-101-time-waits-for-nothing

95

http://www.rossbencina.com/code/real-time-audio-programming-101-time-waits-for-nothing

5.2. Background

in an online repository 2.
This chapter is structured as follows: Section 5.2 presents the background re-

garding the use of deep learning for music applications and embedded computing
platforms within the musical audio domain. In Section 5.3, comprehensive descrip-
tions are provided for the deep learning IEs, evaluation metrics, and models used
in our comparative analysis. The outcomes of the comparison are discussed in Sec-
tion 5.4. Lastly, Section 5.5 encompasses a summary and our concluding remarks
and insights.

5.2 Background

Neural networks have been applied successfully in contexts like onset detection, such
as in the work of Eyben et al. [122], where the authors presented a bidirectional Long
short-term memory (LSTM) network that was able to surpass previous state-of-the-
art scores. A similar neural network was applied to the problems of beat detection and
tracking [110], achieving state-of-the-art results. Similarly, Gómez et al. presented
a successful approach to instrument classification that uses a convolutional neural
network [174]. The authors managed to improve the accuracy of their method through
the use of a pre-processing step based on source separation, and a transfer learning
approach. However, most of the deep neural networks proposed in research for audio
tasks focus on offline inference and are generally unfit for real-time usage, as they
can either result in computationally expensive operations (e.g., in [174]) or require
non-causal information (e.g., the bidirectional network of [122]).

An interesting approach is described by Sigtia et al. in [112], where a neural
network was employed for polyphonic transcription of piano performances. While
the main solution presented by the authors was rather computationally complex, the
authors proposed the use of an optimized search algorithm for real-time contexts.
Moreover, Bock et al. [125] presented a new version of their offline onset detection
model, designed to operate in real-time contexts. This approach only uses causal in-
formation from the audio signal presented and it reduces the latency between onsets
in an input audio signal and the moment at which they are reported. More recently,
Wright et al. [104] introduced an end-to-end neural approach to audio processing,
which managed to model several distortion pedals and guitar amplifiers. The authors
presented a real-time implementation, which is implemented by scratch using a linear

2https://github.com/domenicostefani/deep-classf-runtime-wrappers

96

https://github.com/domenicostefani/deep-classf-runtime-wrappers

Chapter 5. Comparison of Deep Learning Inference Engines

algebra library (i.e., Eigen) and executed on a desktop computer. This is a very spe-
cialized approach that can help produce extremely optimized code, but it completely
lacks the flexibility of deep learning IEs.

These IEs, which include TFLite, TorchScript, and ONNX Runtime, can easily
load almost any neural network model during execution, without recompiling any
code. However, as mentioned in Section 5.1, there is a general confusion around
the compatibility of these IEs with real-time audio applications, which require that
the code does not contain any non-real-time-safe operation that can slow down the
processing of the audio signal. This forms a central aspect of the investigation in
this study, aiming to provide clarity and insights into the performance and real-time
suitability of these IEs for audio processing.

For this reason, Chowdhury [108] developed RTNeural, which is a “neural in-
ferencing library” (i.e., deep learning IE) designed to be used for real-time audio
applications and similar deep learning tasks that must meet hard time deadlines.
The library’s design and functionality are centered around supporting essential but
meaningful deep learning operations, with plans for further expansion to include a
broader array of neural network layers. The author compared the performance of the
library against the PyTorch C++ API (i.e., TorchScript). However, the landscape of
available IEs has evolved since then, especially with the availability of “lite” optimized
versions of most frameworks. Moreover, while computation time is crucial for real-
time applications, it is fair to compare different IEs also in terms of other metrics,
such as how many neural operators are supported, the use of computing resources,
memory, general ease of use, and quality of documentation.

Rtneural was successfully used for the implementation of an embedded guitar
effect3 which was successfully deployed on a Raspberry PI 4 with Elk Audio OS.

Along with the increase of real-time deep learning approaches for audio classi-
fication and processing, there has been a growing number of embedded devices for
audio processing. Meneses et al. [175] presented a comparison of three open-source
embedded audio platforms: Prynth [101], the Bela framework [23], and a custom
processing unit. According to the authors, all the solutions presented different char-
acteristics with no clear winner. More recently, the Elk Audio OS [24] was presented
as an open-source real-time operating system for embedded hardware. Similarly to
Bela, Elk Audio OS uses the Xenomai Cobalt real-time kernel to handle low latency
audio processing, but it is not limited to a single hardware platform and it offers high-

3github.com/GuitarML/NeuralPi/releases/tag/v1.3.0

97

https://github.com/GuitarML/NeuralPi/releases/tag/v1.3.0

5.3. Methodology

definition audio inputs and outputs. The work by Vignati et al. [126] is significant in
its comparison of two key real-time kernels: Xenomai Cobalt kernel and the Preempt
RT kernel patch. The comparison aimed to evaluate the performance of these kernels,
particularly in heavy processing applications. The results highlighted the advantages
of the Xenomai Cobalt kernel, showcasing its superior performance compared to the
Preempt RT kernel patch. This information is valuable for developers and engineers
seeking to optimize real-time processing for their applications, providing insights into
the strengths and weaknesses of different real-time kernel options.

More recently, the work by Vandendriessche et al. [117] delved into exploring hard-
ware acceleration possibilities for deep learning inference in audio processing. The
study investigates the potential of using specialized hardware like TPUs, FPGAs, and
similar devices to accelerate deep learning inference. However, the authors acknowl-
edge that these solutions are highly specialized and may not be universally accessible
across various platforms due to factors such as cost or hard real-time requirements.
Therefore, the focus of this comparison remains on CPU-based inference, which is
viable for both embedded implementations and desktop audio plugins, providing a
practical and widely applicable approach.

In a similar vein, model-specific optimizations such as weight quantization and
other techniques can be instrumental in alleviating the computational load on con-
strained computing devices. Lane et al. [176] provided a comprehensive overview of
limitations imposed by mobile and embedded devices, suggesting strategies to miti-
gate these challenges. The authors proposed a sparse coding approach that effectively
reduces the utilization of computational resources, showcasing promising results in
tasks like speaker recognition and acoustic environment classification by significantly
reducing model size. However, it is important to note that these optimizations may
lead to a reduction in model accuracy, the extent of which depends on various pa-
rameters, including the structure of the target neural network. Given the focus of
this comparison, which centers on general-purpose deep learning IEs, model-specific
optimizations fall beyond the immediate scope of this study.

5.3 Methodology

This section outlines the details of the comparison, which includes the selection of
deep learning IEs, the benchmarking task, the neural networks under evaluation, and
the key metrics of interest.

98

Chapter 5. Comparison of Deep Learning Inference Engines

This study focuses on comparing various deep learning IEs for inference on em-
bedded CPUs. Hence, acceleration capabilities utilizing GPUs and TPUs will not
be considered in this comparison. Additionally, model optimizations such as weight
quantization and pruning are beyond the scope of the comparison.

5.3.1 Inference Engines

The comparison will comprise the following deep learning IEs:

1. TFLite 2.4.14: TFLite is an IE provided by TensorFlow (Google) for execut-
ing neural network models on embedded devices. The TFLite system includes
a converter that transforms models created and trained in TensorFlow into
.tflite files, and an Interpreter that can load these TFLite models and per-
form inference.

2. TorchScript 1.10.05: TorchScript is a system provided by PyTorch developers
that allows models trained in a Python environment to be converted into code
that can be executed in environments without Python dependencies.

3. ONNX Runtime 1.76: ONNX Runtime is an IE provided by Microsoft specif-
ically for ONNX (Open Neural Network Exchange) neural network models. It
is said to be designed to deliver significant speed improvements for both train-
ing and inference of neural networks due to its optimization and acceleration
capabilities.

4. RTNeural7: RTNeural [108] is a custom IE designed specifically for audio
processing in hard real-time contexts. It offers a compact and easy-to-use li-
brary, although it supports only a limited range of neural layers. At the time
of writing this contribution [109], RTNeural did not support functionalities like
Max-Pooling and Batch Normalization layers. Despite its limitations, RTNeu-
ral can be a strong competitor to more popular alternatives in certain audio
processing contexts. It provides both a dynamic model loading mode, like other
IEs, and a compile-time mode intended to reduce execution time for small net-
works, as mentioned in the library’s documentation.

4https://github.com/tensorflow/tensorflow/releases/v2.4.1
5https://github.com/pytorch/pytorch/releases/tag/v1.10.0
6https://github.com/microsoft/onnxruntime/releases/v1.7.0
7https://github.com/jatinchowdhury18/RTNeural

commit: be0ccbc6b6ed180ba6ef65896628ae4ab2a25362

99

https://github.com/tensorflow/tensorflow/releases/v2.4.1
https://github.com/pytorch/pytorch/releases/tag/v1.10.0
https://github.com/microsoft/onnxruntime/releases/v1.7.0
https://github.com/jatinchowdhury18/RTNeural/tree/be0ccbc6b6ed180ba6ef65896628ae4ab2a25362

5.3. Methodology

5.3.2 Task

In this comparison, we assess the performance of four distinct IEs outlined in Sec-
tion 5.3.1 using a series of neural network models for real-time classification of ex-
pressive guitar playing techniques. The input of each model is a set of features from
the very first milliseconds of a note in the signal, while the output represents a prob-
ability distribution across eight specific techniques. For this task, the neural classifier
constitutes the final stage of an execution pipeline, which includes an onset detector
and a set of feature extractors, as illustrated in Figure 5.1. Only one classification
model is needed, but we use three models that differ in size (therefore computational
complexity of inference) for this comparison.

Trigger

Audio Signal

Onset
Detector

Feature
Extractors

DNN
Classifier

Expressive Technique

Figure 5.1: Expressive guitar technique Classification pipeline.

In this setup, upon detecting a note onset, the feature extractors compute various
timbral features (e.g., MFCC, BFCC) from the audio signal. These features are
arranged in a one-dimensional vector and fed as input to a classifier model. Our
models are tailored to classify eight distinct categories of expressive guitar techniques,
therefore, each classification model has 8 output neurons, where the one with the
highest activation value represents the predicted technique. As a consequence, the
neural network models compared are all examples of FFNNs with no recursions.

In our application, the classifier operates within a computation deadline of 20
ms from the generation of a note onset [135]. This constraint arises because the
classification outcome is employed to create new sounds that need to feel simultaneous
to the input sound for human auditory perception. Generally, the human auditory
system struggles to differentiate between complex tones separated by less than 30
ms [21]. Adhering to a strict 20 ms deadline allows for the utilization of complex
synthesis algorithms based on the classification result. Unlike tasks with rigid hard
real-time constraints, such as audio processing, this classification task involves a soft
real-time deadline. Hence, we can execute it on a high-priority thread distinct from

100

Chapter 5. Comparison of Deep Learning Inference Engines

the hard real-time processing of the input/output audio signal [80].

5.3.3 Models

The models chosen for our comparison are the following:

• Model A: the first model is a FFNN composed of four dense hidden layers
with 800 neurons each, an input layer with 180 neurons, and a final layer with
8 outputs. Batch normalization was used between each hidden layer with a
positive impact on model accuracy. The model comprises a total of 2,083,208
parameters.

• Model B: Model B is a smaller version of Model A, with six hidden layers
of 350 neurons each, an input layer with 173 neurons, and 8 model outputs,
resulting in a total of 677,958 model parameters. Model B was included to test
the performance of the RTNeural framework, which a the time of writing this
contribution, did not support the Batch Normalization layers used in Model A.

• Model C: The last model is a drastically smaller version of Model A, with one
dense hidden layer with 350 neurons, 173 inputs, and 8 outputs, resulting in a
total of 63,708 parameters. Model C was chosen because Model A and Model B
were found to be too large to be executed in the real-time execution thread8,
so only soft real-time constraints can be guaranteed with those models. While
this is allowed by our specific task, we offer a comparison that includes the
capabilities of each IE to execute models in the real-time thread, which would
be required by any model that performs signal processing. The small size of
Model C ensures that execution will take less than the time budget between
audio interrupts. Model C is used to verify whether the IEs compared here
can run without breaking real-time processing constraints (e.g., not allocating
dynamic memory or waiting for lower priority tasks and mutexes).

The optimization and choice of hyperparameters are not relevant to this particular
chapter, as accuracy is not a metric of comparison that depends on the IE used. All
the models were defined and trained using TensorFlow and the Keras Sequential API.
Subsequently, each model was converted to the required formats for the respective
IE. Details regarding the conversion process can be found in Section 5.4.5.

8The audio plugin created for this task was executed at the rather fast pace of 64 samples at a
sample rate of 48 kHz (i.e., 1.33 ms in between audio interrupts) for low-latency audio input and
onset detection.

101

5.3. Methodology

Figure 5.2: Architecture of the neural network models used for the comparison.

5.3.4 Metrics

Each IE is compared in terms of the following eight metrics:

1. Real-time safety;

2. Model Execution time;

3. Usage of computation resources (CPU and RAM);

4. Model footprint (file size);

5. Library footprint (library object size);

6. Supported operations;

7. Ease of use;

8. Quality of documentation.

102

Chapter 5. Comparison of Deep Learning Inference Engines

Table 5.1: Compatible combinations of models and IEs compared in our analysis. The
dynamic-model-load mode (R.load) and the compile-time-definition mode (C.def) of
RTNeural are tested separately. The sole Model C is tested by running the IEs in the
real-time thread (for the reasons described in Section 5.3.2 and Section 5.3.3), while
the remaining are loaded on a separate high-priority thread.

TFLite TorchScript
ONNX RTNeural

Runtime [R.load] [C.def]

MA ✓ ✓ ✓ ✗ ✗

MB ✓ ✓ ✓ ✓ ✓

MC ✓(RT
thread)

✓(RT
thread)

✓(RT
thread)

✓(RT
thread)

✓(RT
thread)

First and foremost, our analysis focused on determining whether each IE could
perform inference safely on a real-time thread. Safety in this context refers to the ab-
sence of code operations that could take an “unbounded” amount of time to complete.
Because of the Xenomai real-time kernel used by Elk Audio OS, unsafe operations or
system calls performed from the audio thread trigger a mode switch, returning control
to the Linux kernel. Mode switches are logged by the system, aiding in the identifi-
cation of non-safe operations in the real-time thread. Consequently, with Model C,
each IE was executed within the real-time thread to assess their safety.

In addition to assessing safety, we also aimed to determine which IE was the most
efficient in terms of executing the same models. Efficiency is crucial in a real-time
context as it constrains the minimum latency achievable by the system. Execution
time was first measured in an isolated context by running each IE from the Linux
shell, independently of the classification pipeline. This provided a measure that
was unaffected by many parameters of our classification pipeline. However, it did
not account for delays that could be present when deploying the complete pipeline.
Hence, execution time was also measured within the deployed audio classification
plugin. For Model A and Model B, executed on a high-priority thread separate
from the real-time execution, the second measurement includes the time required
to schedule the inference and any delays stemming from real-time audio processing
running in the foreground.

In our evaluation, we also monitored the average CPU and RAM usage during the
execution of the audio classification plugin using the process status command (ps) in
Linux and the Xenomai kernel. This allowed us to estimate the resource consumption
associated with each IE. Furthermore, considering that each model needed to be

103

5.3. Methodology

converted to a specific format for each IE, we measured the size of the resulting model
files. This information is crucial, especially in the context of limited storage on some
embedded computers, to ensure that the models can be accommodated within the
available storage space.

The first three metrics (i.e., Real-time safety, Model Execution time, and
Usage of computation resources) were measured on a Raspberry PI 4 single-
board computer (4 GB RAM model). The Raspberry PI board runs the Elk Audio
OS (v0.9.0), based on the the Xenomai Cobalt Kernel9. The computation times
for standalone execution were obtained by averaging across 17,604 executions for
each model-IE combination. “Deployment” execution times were averaged across 768
executions, triggered on the classification plugin that was deployed on the target
embedded system. The 768 executions were triggered from as many guitar notes in a
26-minute audio signal that was streamed to the embedded board in real-time for each
combination of model and compatible IE. Due to the time-intensive nature of this
process, the number of executions was limited. Additionally, Model footprint was
simply defined as the file size of the models in the format of each IE. Furthermore,
we evaluated four metrics that are specific to the different deep learning IEs and
independent of the models.

Library footprint (library object size): Given that memory storage can be a
constraint on embedded devices, we measured the total size in MiB of the shared or
static library objects needed for each IE. Each library was compiled for the Linux
AArch64 architecture (ARM64).

Supported operations: We compiled a list of the most common and widely
used neural layer types and assigned a score to each IE reflecting the fraction of
operations supported. In Deep Learning, it is crucial that IEs support a wide range
of operations, allowing for flexibility in model architecture and training. The list of
main layers used for comparison is composed of Dense, Gated Recurrent Unit, LSTM,
1D and 2D Convolution, 1D and 2D MaxPooling, and Batch Normalization layers.
Additionally, the list of activation types includes: TanH, Sigmoid, Softmax, ReLU,
Leaky ReLU, and PReLU activations.

Ease of use: While challenging to quantify precisely, we aimed to evaluate the
ease of use of each IE. This encompassed factors such as the simplicity of converting a
pre-trained model to the target format, as well as the usability of the APIs for model
loading, retrieval of model properties, and inference execution. Two of the authors

9https://xenomai.org/

104

https://xenomai.org/

Chapter 5. Comparison of Deep Learning Inference Engines

responsible for the implementation (including the author of this thesis) assigned a
score ranging from zero to ten for each category. The scores were then averaged to
derive a final score for this metric.

Quality of documentation: This metric evaluates the quantity and quality of
documentation available for each deep learning IE. Similar to the ease of use metric,
two authors individually assigned a score ranging from zero to ten to each IE with
respect to the quality of its documentation. The scores provided by the two authors
were then averaged to determine the final score for this metric.

5.4 Results and discussion

This section presents the results of the comparison between the deep learning IEs
mentioned in Section 5.3.1, according to the metrics described in Section 5.3.4.

5.4.1 Real-time safety

The real-time safety capabilities of the deep learning engines were evaluated by run-
ning the inference of Model C in the real-time audio thread while monitoring the
status of the Xenomai Cobalt real-time kernel. Interestingly, all the IEs compared
here were able to execute multiple subsequent inference operations without causing
audio glitches or a significant increase in mode switches at run-time.

However, it is worth noting that both TorchScript and ONNX Runtime did gen-
erate a single mode switch each during the initial execution of the model.

In the case of TorchScript, the identified non-safe operation was the allocation
of a std::vector<c10::IValue> item, which consistently occurred during the
first call of the forward function. To address this, a single inference operation
was executed during the first call to the real-time audio processing method, acting
as a “priming” operation. This priming operation triggers an early allocation of
memory in the classifier at the program’s startup, where delays that are due to non-
safe operations can be tolerable. Consequently, when the first actual classification is
needed, non-real-time-safe operations are avoided.

In the case of ONNX Runtime the culprit of the mode-switch was the call to
Ort::Run(), which was causing memory allocation on its very first call. The same
“priming” approach was successfully applied to ONNX Runtime.

105

5.4. Results and discussion

5.4.2 Execution time

The execution times of the models varied across different deep learning IEs, even
when using identical models. This variation was assessed through both isolated exe-
cutions and in the context of an audio plugin running on the real-time Elk Audio OS
(see Section 5.3.4). The resulting measurements for both scenarios are presented in
Figure 5.3.

The results show that, while most of the IEs offer rather comparable performance
in terms of execution time (especially with smaller models), TorchScript is consis-
tently slower than the alternatives. Aside from TorchScript, the two alternatives
among the popular IEs (i.e., TFLite and ONNX Runtime) averaged comparable times
with Model B, while TFLite slightly prevailed on the smaller Model C and ONNX
Runtime worked better with the bigger Model A. The difference for Model A was
reduced when running the deployment tests, which indicates that ONNX Runtime
could be performing better optimizations on larger numbers of operations.

Additionally, RTNeural showed slightly longer average execution times compared
to TFLite and ONNX Runtime, but the differences were small and the performance
was still comparable, as opposed to TorchScript. Moreover, RTNeural was tested with
both of its model loading modalities: run-time dynamic model parsing and compile-
time model definition. Interestingly, the two modalities exhibited virtually identical
performance in all the tests, contrary to the expectation of quicker inference with the
compile-time model definition as indicated in RTNeural’s documentation. This may
be attributed to the larger size of the models used in the comparison, which generally
exceed the sizes RTNeural was specifically designed for. It is important to note that
RTNeural was used with the Eigen backend, as suggested by the developer for larger
networks. However, RTNeural also supports the use of xsimd or the C++ STL, which
might yield different results and could be explored in future investigations.

As expected, the standard deviation of the execution time is minimal for all stan-
dalone execution tests and the execution of Model C in the real-time thread of the
deployment application. On the contrary, the deployment setups present some vari-
ability in the execution time of Model A and Model B, which is due to the syn-
chronization between the audio processing routine and the inference thread (which
are separate for Model A and Model B in the deployment setup). In particular, in
a few cases, the results of the classification reach the real-time thread one or two
audio interrupts late. These delays represent a maximum of 6.59% of classifications
where the results arrive one interrupt later than the average (i.e., 1.33 ms), and a

106

Chapter 5. Comparison of Deep Learning Inference Engines

mere 0.37% that arrive two interrupts late (i.e., 2.67 ms). The consistency of these
delays confirms that they are primarily caused by synchronization issues between the
real-time execution and the classification thread, rather than being inherent to the
deep learning IEs themselves.

5.4.3 Computational resources

The usage of CPU and RAM was monitored during the execution of the audio clas-
sification plugin thanks to the process status command (ps), the top command,
and the utilities of the Xenomai kernel. The usage metrics for each configuration
were averaged across a test that lasted 25 minutes and 50 seconds, during which
768 inference operations were executed. On average, an inference operation occurred
approximately every 2 seconds. The detailed results for each test, showcasing CPU
and RAM usage, are presented in Table 5.2.

Table 5.2: Usage of CPU and RAM for each combination of model and compatible
IE. “Avg.CPU” represents the CPU usage of the main Linux system, specifically non-
real-time tasks, while “Avg.CpuX” reports the CPU usage by real-time tasks in the
Xenomai kernel. The average CPU and memory usage were measured using the ps
and top commands. The percentage measures are relative to the embedded system
described in Section 5.3.4, while Avg. Phys. Mem. and Avg. Virt. Mem. are
measured in MiB.

Model Runtime Avg. Cpu Avg. CpuX Avg. Mem % Avg. Phys.
Mem. (MiB)

Avg. Virt.
Mem. (MiB)

MA TFLite 8.7 % 6.1 % 5.2 % 196 1158
TorchScript 9.0 % 5.8 % 8.8 % 333 1551
OnnxRuntime 10.7 % 6.1 % 6.5 % 246 1335

MB TFLite 8.0 % 5.9 % 5.0 % 191 1217
TorchScript 8.6 % 5.9 % 8.6 % 327 1545
OnnxRuntime 9.6 % 5.9 % 5.8 % 222 1310
RTNeural(R.time) 8.4 % 5.8 % 5.7 % 217 1242
RTNeural(C.time) 8.6 % 5.8 % 5.7 % 215 1241

MC TFLite 6.1 % 6.2 % 4.7 % 180 1139
TorchScript 5.3 % 5.8 % 7.7 % 292 1254
OnnxRuntime 5.1 % 5.8 % 5.2 % 198 1224
RTNeural(R.time) 5.2 % 5.8 % 4.8 % 181 1141
RTNeural(C.time) 5.1 % 5.8 % 4.8 % 182 1142

The low frequency of classification operations indeed results in a low average uti-
lization of computational resources. However, it is important to note that differences
in resource usage between different IEs and models could become more significant at

107

5.4. Results and discussion

higher operation frequencies, such as those encountered in audio processing. In terms
of memory consumption, TorchScript consistently exhibits the highest memory usage
percentage, which aligns with the inference time results (see Section 5.4.2). Addi-
tionally, for both Model A and Model B, ONNX Runtime demonstrates higher CPU
usage on the standard Linux kernel compared to the alternatives. It is notable that
all IEs exhibit higher CPU usage from operations running in the non-hard-real-time
domain for both Model A and Model B, as expected since inference for these models
is executed on a non-real-time thread. Conversely, CPU usage for all IEs on Model C
is higher on the Xenomai Kernel operations, given that Model C is executed in the
audio processing thread. These variations emphasize the importance of considering
the specific use case and operational context when evaluating the performance of IEs.

Overall, the average use of CPU is demonstrated to not be a highly informative
metric for low-rate audio classification, as it does not capture the nuances in perfor-
mance that can be better highlighted by measuring execution times, as demonstrated
in the previous section. The relative increase in RAM consumption from Model C to
Model B and Model A is minimal despite the substantial difference in model sizes.
This is to be attributed to the ample amount of RAM available in the latest iteration
of the Raspberry PI single-board computer (4 GB), reflecting the significant tech-
nological advancements in modern embedded computers. It emphasizes the progress
in hardware capabilities and how these advancements can influence the efficiency of
handling larger models and computations even in resource-constrained environments.
Absolute memory consumption metrics in MiB also show a rather small increase
with larger models. Average memory usage increase between Model C and Model B
is 14% with a maximum of 20%, and between Model C and Model A is on average
16% with a maximum of 24%. On the contrary, the number of parameters of Model B
is 10.6 times larger than Model C, and Model A has 32.7 more weights than Model C,
which indicates that, for these model sizes and at this rate of executions, most of the
memory consumption could be overhead that is not to be attributed to model size.

It is worth noting that the CPU and RAM usage results obtained with the ps
and top commands can be subject to measurement error, as they rely on averaging
over large time windows. In this case, very sizable but brief consumption spikes will
go undetected, while still hindering the performance of the hard real-time system.
The use of more precise measurements like the Elk Audio OS’ Sushi internal timings
is crucial for reliable results.

108

Chapter 5. Comparison of Deep Learning Inference Engines

5.4.4 Model footprint

When converting the original Keras models to the formats accepted by the various
IEs, we noticed differences in the final file sizes. The file size of the models after con-
version is an important consideration, particularly for devices with limited memory,
as it impacts the storage and loading of models into memory during inference. In
the case of TFLite, TorchScript, and ONNX Runtime, which use compressed model
formats, the resulting file sizes are quite similar. On the other hand, RTNeural uti-
lizes the JSON format, resulting in significantly larger file sizes for each model. This
difference in file size is a trade-off between human readability (as JSON is easily
human-readable) and storage efficiency. The results are shown in Figure 5.4.

Additionally, a test conversion of only the supported operations of Model A (i.e.,
no batch normalization) results in a final model file with a size of 94.9 MiB. Nev-
ertheless, since RTNeural is an open-source project, any developer could integrate
serialization and deserialization primitives to obtain lightweight models.

5.4.5 Model-independent metrics

The final four metrics are Library size, Supported operations, Ease of use, and Quality
of documentation (See Section 5.3.4). These metrics are independent of the use of
either Model A, B, or C. The scores obtained for these metrics are shown in Table 5.3
and visually represented in Figure 5.5, and their discussion follows in subsequent
sections.

Table 5.3: Model-independent metric results. All the scores are expressed on a scale
from zero to ten, with ten being the most desirable score. The Library size score is
inversely proportional to the actual size, with ten being the smallest library (RTNeu-
ral) and zero being the largest (TorchScript). The highest score for each metric is
reported in bold.

Inference Engine
Library size Supported Ease Quality

(score) Operations of use of doc.

TFLite 9.25 10 9.75 9.5
TorchScript 0 10 7.75 4.5
ONNX Runtime 8.98 10 7 8
RTNeural 10 5.7* 6.5 3.5

* With recent additions to the RTNeural library that followed the contribution presented in this chapter [109], this score
would be 7.9. Considering PReLU as a manual substitute for LeakyReLU, the score would be 8.6.

109

5.4. Results and discussion

Library Size

Library Size refers to the overall size of the C++ libraries for each IE. The corre-
sponding sizes can be found in Table 5.4. The results reveal that TorchScript has a
notably large code library, TFLite and ONNX Runtime are relatively similar in size,
while RTNeural is significantly smaller by several orders of magnitude. However, it
is essential to consider these measures in conjunction with the sizes of the models
mentioned earlier.

Table 5.4: Size of the C++ library objects for each IE. The version of each IE is
specified in Section 5.3.1.

Inference Engine Library Size (MiB) Total (MiB)

TFLite libtensorflow-lite.a 8.8 8.8

TorchScript
libtorch_cpu.so 116.8

117.3
libc10.so 0.5

ONNX Runtime libonnxruntime.so 12.0 12.0

RTNeural libRTNeural.a 0.026 0.026

From Figure 5.6, we observe that the relatively compact size of TorchScript models
is offset by its substantial code library. Additionally, although the RTNeural library
is extremely small to the point of being practically invisible on the plot, its large
uncompressed JSON models pose a significant disadvantage. Moreover, if we project
the size of Model A (which is currently unsupported), it exceeds 94 MiB, aligning the
total size more with the significantly large TorchScript rather than the other options.
However, the implementation of new serialization and deserialization functions for
RTNeural (refer to Section 5.4.4) would significantly reduce the overall footprint
since, at its current state, it is heavily influenced by the model size.

Supported Operations

The amount of supported operations is presented as a percentage representing the
availability of various neural layer types and activations in each IE from a list of the
most common types of neural layers and activations (see Section 5.3.4). As per their
documentation, the more advanced TFLite, TorchScript, and ONNX Runtime each
cover 100% of the listed operations. Conversely, RTNeural had more limited sup-
port, including only some operations such as Dense, Gated Recurrent Units, LSTM
cells, 1D Convolutions, and certain activations: TanH, Sigmoid, Softmax, and ReLU.

110

Chapter 5. Comparison of Deep Learning Inference Engines

Hence, RTNeural achieves coverage for 57% of the commonly used neural network
operations. Notably, at the time of writing this contribution [109], RTNeural lacked
support for key operations like 2D convolutions, MaxPooling, and Batch Normaliza-
tion. From the time of writing this contribution [109], the development of RTNeural
continued with the addition of more operators by the community. Notably, it now
includes 2D convolutions, Batch Normalization, and more activation types, bringing
the supported operations at 79%10.

Despite supporting only a part of the most common operations, the code library
of RTNeural is more than 300 times smaller than that of TFLite and over 450 times
smaller than ONNX Runtime. Coupled with comparable execution-time results to
the most popular alternatives, this underscores a significant emphasis on simplicity
and avoidance of code bloat within RTNeural.

Ease of Use

Ease of use was assessed by the first two authors of the contribution this chapter is
based on ([109]). It was assessed based on the perceived complexity of converting
a neural model and utilizing the APIs of each IE to load the model, retrieve its
properties (e.g., input and output sizes), and perform inference. It is important to
note that the scores for ease of model conversion were influenced by the starting point
being a standard Keras/TensorFlow model.

The conversion to a TFLite model is a straightforward process facilitated by a
Python tool provided by the developers, namely TFLiteConverter. This tool allows
the user to convert a SavedModel, a Keras model, or concrete functions easily. On the
other hand, generating a TorchScript model from a TensorFlow model necessitates
a custom implementation of a TensorFlow-PyTorch converter. Fortunately, both
frameworks represent the fundamental layers in a relatively similar way, enabling a
relatively simple conversion of data types from one library to the other. One detail
to note is that PyTorch uses a different orientation standard for weight matrices,
requiring the transposition of the data stored in the TensorFlow classes.

After obtaining a PyTorch model, the JIT API offers two methods to generate
a TorchScript model: tracing and scripting. Tracing involves inferring the computa-
tional graph by recording the operations performed on a sample input. On the other
hand, scripting creates the TorchScript model by analyzing the source code, making

10If we consider PReLU as a substitute for LeakyReLU, the percentage of operations supported
by RTNeural would now 86%.

111

5.4. Results and discussion

it a better choice for more complex models, particularly those involving conditional
statements and more intricate logic. Although these models were simple enough to be
converted through tracing, we still used scripting to have the guarantee of a complete
conversion. Similarly, in PyTorch, users can opt for tracing to generate an ONNX
model, which is a straightforward process. This is a relatively simple operation, but
it does not provide ONNX Runtime a high score for model conversion since it re-
quires the custom transformation of the original TensorFlow model into a PyTorch
model. Lastly, for RTNeural, a Python script is available to export TensorFlow model
weights to a JSON file. However, some refinement was necessary to discard layers
not essential for inference, such as dropout layers.

The utility developed to convert TensorFlow models for each IE is available in
the project’s repository11, along with wrappers for each IE, maintaining a consistent
API and enabling seamless interchangeability between them.

Quality of documentation

The quality of documentation metric comprises the clarity and quantity of guides,
tutorials, and formal API documentation. In this aspect, TFLite stood out with the
best documentation, featuring user-friendly guides and comprehensive API documen-
tation. ONNX Runtime followed closely, offering detailed API documentation and a
reasonable number of examples, though it lacked the extensive tutorial resources for
TFLite. On the other hand, TorchScript had relatively limited technical documen-
tation for a project of its scale, relying mostly on a few incomplete guides. Lastly,
RTNeural understandably had a minimal amount of information, which is to be ex-
pected by a project of its size, but its intuitive usability is reflected in the scores
assigned in the previous section.

Notes on the sustainability of projects that use inference engines

It is worth noticing that the reliability of project dependencies throughout time, in
terms of updates and patches, is a criticality of any sustainable and durable project
[177]. In this context, this is particularly relevant for RTNeural, which is the effort
of a small group of people. It is in fact a very well-known tendency for small projects
to easily stop development and remain unupdated. Therefore adopting RTNeural as
an inference engine, compared to more popular projects could be a risk. Table 5.5

11https://github.com/domenicostefani/deep-classf-runtime-wrappers

112

https://github.com/domenicostefani/deep-classf-runtime-wrappers

Chapter 5. Comparison of Deep Learning Inference Engines

shows a simple comparison between the four IEs in terms of the start date, number
of contributors, and number of commits. This highlights the rather small nature of
the RTNeural project in comparison to the others.

Project Start Date Contributors Commits

TFLite 2019 (Demo in 2017) 560 (3,480 for TensorFlow) 14,196
TorchScript 2018 N/D (3,080 for PyTorch) 67,825
ONNX Runtime 2018 579 10,224
RTNeural 2020 13 154

Table 5.5: Comparison of project histories between the 4 inference engines compares
(accessed on 29/12/2023).

5.4.6 Comparison Results and Key Takeaways

Each IE proved to be safe for real-time inference when implemented with appropri-
ate coding practices. Additionally, regarding model execution speed, TFLite, ONNX
Runtime, and RTNeural displayed the fastest performance with largely comparable
results, while TorchScript exhibited considerably slower performance. Notably, we
observed that the compile-time definition mode of RTNeural did not yield a substan-
tial speedup with the tested models.

The average CPU and memory usage proved to be less informative for a relatively
low-frequency task. However, they did confirm the variations in resource consumption
across different neural network models. Additionally, it is worth noting that, except
for RTNeural, all the IEs use a compressed format for neural networks, resulting
in considerably smaller model files compared to the human-readable representation
used by RTNeural. Notably, TorchScript exhibited a significantly larger code library
compared to all the alternatives.

All the popular IEs examined provide comprehensive support for a wide range of
neural layers and activation functions. In contrast, RTNeural lacked, at the time this
comparison was performed [109], some critical types of neural layers such as Batch
Normalization, MaxPooling, and 2D Convolutions. However, despite supporting 57%
of the most common neural operators, the code library of RTNeural was found to
be remarkably compact, differing by several orders of magnitude compared to the
competition. Lastly, in terms of ease of use and detailed documentation, TFLite
and ONNX Runtime were identified as the most user-friendly and well-documented
options.

113

5.4. Results and discussion

Figure 5.3: Mean and standard deviation of model execution time in microseconds
for each combination of model and compatible IE. The top image illustrates measure-
ments obtained in an isolated context, while the image on the bottom encompasses the
“deployment” execution time. These metrics shed light on the variability and perfor-
mance of different IEs in handling the same models (see Section 5.3.4).

114

Chapter 5. Comparison of Deep Learning Inference Engines

0 5 10 15 20 25 30
Size (MiB)

M
od

el
A

M
od

el
B

M
od

el
C

 7.93

 2.59

 0.24

 7.97

 2.60

 0.25

 7.95

 2.59

 0.24

 29.35

 2.74

Model Size for each Runtime
Runtime
TFLite
TorchScript
OnnxRuntime
RTNeural

Figure 5.4: Size of Model A, Model B, and Model C when converted for each IE.

115

5.4. Results and discussion

Figure 5.5: Representation of the model independent scores for each IE. The four
spokes on each graph represent respectively the score assigned to the size of the IE
library, the number of supported operations, the perceived ease of use, and the quality
of documentation.

116

Chapter 5. Comparison of Deep Learning Inference Engines

0 20 40 60 80 100 120 140
Size (MiB)

M
od

el
A

M
od

el
B

M
od

el
C

 16.71

 11.37

 9.02

 125.28

 119.91

 117.57

 19.99

 14.63

 12.29

 29.37

 2.77

Combined Size of library code and model for each Runtime

Runtime
TFLite
TorchScript
OnnxRuntime
RTNeural

Figure 5.6: Combined sizes of models and C++ code libraries for each compatible
combination. The lighter-color part of each bar shows the size of each code library,
while the remaining part indicates the size of the model.

117

5.5. Summary

5.5 Summary

In this chapter, we presented a comparison of four distinct inference engines focusing
on real-time audio classification using embedded CPUs. Our objective was to provide
insights into optimized inference engines for efficient deep learning inference, espe-
cially in the context of real-time audio classification. For our study, we chose models
geared towards classifying expressive guitar techniques in real-time. Our findings
demonstrated that many well-known deep learning inference engines are well-suited
for real-time audio classification, without needing to resort to specialized and more
limited solutions. Conversely, some specialized solutions like RTNeural can serve as
lightweight and minimalist alternatives, particularly in scenarios where flexibility is
not a primary concern. Although the focus of this comparison was on embedded com-
puters and audio classification, most results are likely to translate or scale to audio
plugins for desktop computers, and audio processing. The limitations of this study
are in the choice of restricting the comparison to Feed-Forward Neural Networks and
only four deep learning inference engines. Besides exploring more inference engines,
future work should also investigate performance differences with a wider range of
deep learning models, such as recurrent and convolutional neural networks. Other
possibilities would be to extend this comparison to slower CPUs and to test with
quantized neural network models.

118

Chapter 6

Embedded Real-Time Expressive Gui-
tar Technique Recognition

Following the various approaches presented in the previous two chapters, we set to
improve the expressive guitar technique classifier presented as a demonstrative exam-
ple in Chapter 3. In this chapter, we present a flexible-latency approach to embedded
real-time expressive guitar technique recognition. We set to classify four pitched and
four percussive techniques on seven acoustic guitars. We conducted three experi-
ments to get a broader understanding of the problem and the capabilities of the
classifier. We observed how relaxing onset-to-result latency constraints can greatly
benefit accuracy with pitched techniques, while more attack-based percussive tech-
niques can suffer from longer feature windows. Additionally, we observed a “Guitar-
Player” effect that deeply influences the reliability of performance metrics and model
generalization capabilities. This was successfully addressed with grouped k-fold cross-
validation, achieving reliable accuracy results between 60.1% and 81.7% with total
latency between 14.2 and 101 ms on a Raspberry PI implementation. We achieved
a 17% accuracy increase when focusing on one guitar and player, and measured a
non-negligible impact of the guitarist’s touch on recognition results.

This chapter discusses a contribution submitted to IEEE/ACM Transactions on
Audio, Speech, and Language Processing.

119

6.1. Introduction

6.1 Introduction

In this chapter, we present a real-time embedded classifier that harnesses timbre
nuances to identify pitched and percussive techniques on a smart acoustic guitar. We
considered four main pitched playing styles (i.e., sounds produced on the strings)
and four different classes of percussive hits (i.e., non-pitched sounds produced by
hitting the guitar’s body). The recognition system detects note onsets, analyzes a
brief excerpt of the signal (i.e., attack phase) that is captured by the guitar’s internal
transducers, and outputs a prediction of the expressive technique used. Moreover, we
conducted three experiments to investigate the impact of target latency and context
information on recognition accuracy, generalization performance, and specialization
performance on one guitar.

During the process, we observed the existence of a specific Guitar/player effect .
This effect is similar to the well-known “album effect” in the artist recognition prob-
lem [178]. The original album effect relates to the similarity between songs in the same
record and is described as the risk of having a model learn to classify the producer
traits and mastering chain of a record when instead trying to learn the higher level
characteristics of the artist who made it. When a record is present in both the train
and test datasets with different songs, learning models can show misleading high-
performance metrics while lacking the ability to generalize to new data, since they
mostly learn to classify album-specific similarities. We observed a similar effect even
within very small analysis windows in expressive guitar technique recognition, where
different guitars and players in a dataset can have very specific traits (e.g., trans-
ducer qualities, resonating characteristics, preamplifier equalization, playing style),
and models that are trained and tested with data from the same guitar/player pair
can show extremely high recognition accuracy even on 5 or 10 fold cross-validation,
but fail to generalize to new data. While differences in timbre between musicians
and instruments are a well-known fact and have even been used for player identifica-
tion [20], the impact of these differences in the very first milliseconds of played notes
has not been assessed yet. In particular, studies like that of Zhao et al. [20] perform
player identification by analyzing specific features, e.g., vibrato, over long periods.

The remainder of the chapter is organized as follows. In Section 6.2 we describe
the experimental setup, including the data, hardware, and software used, along with
the three different experiments conducted. In Section 6.3 we present the results of
the experiments and discuss them. Finally, we summarize the work and draw our

120

Chapter 6. Embedded Real-Time Expressive Guitar Technique Recognition

conclusions in Section 6.4.

6.2 Experimental Setup and Motivation

The aims of this study are twofold: to describe the approaches that achieved the
best results for embedded real-time expressive guitar technique recognition, but also
to present a broader overview of the problem. The latter derives from acknowledg-
ing the limited amount and variety of expressive guitar data available to us (clean,
well-separated, labeled, and varied data) and how it can affect the performance of
expressive technique recognition. In particular, we created a novel dataset as well as
devised three experiments aimed at investigating the following aspects:

• The recognition accuracy with respect to different latency constraints;

• The Guitar/player effect and the generalization performance with more or less
variety in the training data;

• The specialization performance of a single instrument, and the relevance of the
guitarist’s touch.

The remainder of this section is organized as follows: Section 6.2.1 describes the
data used for the experiments. Section 6.2.2 provides information about the hardware
choice while Section 6.2.3 describes the software implementation common to the three
experiments. Finally, Sections 6.2.4, 6.2.5 and 6.2.6 describe the three experiments.

6.2.1 Data

The dataset used for the experiments was an updated version of the expressive guitar
technique dataset mentioned in Chapter 3 and [80]. The dataset is a work in progress
with recordings of pairs of guitars and players being added rather regularly. The
dataset is currently composed of 15 hours and 55 minutes of recordings of over 35,000
individual notes captured with the internal pickups of 7 acoustic guitars. These are
played with 12 distinct expressive techniques (including percussive techniques), and
three different dynamics (i.e., piano, mezzo forte, forte) by 6 experienced guitarists.
The dataset was made freely available at [28]. Of the 12 techniques, 8 attack-based
techniques were selected for these experiments, where four are percussive techniques
(percussive hits on different parts of the soundboard), and 4 are pitched. The tech-
niques considered for this study are the following:

121

6.2. Experimental Setup and Motivation

1. “Kick” technique: hit on the lower right part of the guitar top;

2. “Snare-1” technique: hit on the lower side of the guitar body;

3. “Tom” technique: hit on the upper guitar body near the top of the fretboard
end;

4. “Snare-2” technique: hit on the muted strings over the fretboard;

5. “Natural Harmonics”: plucking a string and stopping it to let harmonic over-
tones ring;

6. “Palm Mute”: partially muting a string with the palm of the picking hand;

7. “Pick Near Bridge”: plucking a string near the saddle, or bridge;

8. “Pick Over the Soundhole”: plucking a string over the soundhole.

A more detailed description of the techniques and dataset can be found in Chapter 3
and [80]. It is worth noticing that we consider any note played by a guitarist as being
played with one playing technique. In this context, “Pick over the soundhole” can
be considered the ordinario technique. Some of the other techniques in the dataset
(e.g., bending, hammer-on, or vibrato) were left out for this particular study as we
opted to perform short-time (i.e., attack-timbre based) technique recognition, while
these will be addressed through pitch tracking on longer time scales in future studies.
The reasons for this choice are described more in detail at the end of Chapter 3, in
Sections 3.6.4 and 3.7.

With respect to the data used for the work inChapter 3, two more guitar/player
pairs were added. Furthermore, the slice of the dataset with the eight playing tech-
niques selected here was composed of 31,911 notes and as many onsets. Differently
from the previous study, each onset was labeled at the millisecond level in order to
precisely measure the onset detection latency, accuracy, and total recognition latency.

Additionally, for Experiment 3 (see Section 6.2.6), we recorded a small additional
test dataset. This extra-test dataset is composed of 362 notes recorded by the pair
Guitar#1/Player-A (which is already present in the main dataset), and 380 notes
recorded by the new pair Guitar#1/Player-B, where guitar Guitar#1 is the same as
in the main dataset, but Player-B is a different guitarist playing the same guitar. The
extra-test dataset is used to measure differences in the recognition accuracy between
the two players on the same guitar, which could suggest a non-negligible effect of

122

Chapter 6. Embedded Real-Time Expressive Guitar Technique Recognition

the guitarist’s touch on the recognition system. We consider as guitarist’s touch the
specific way a guitarist conceives and plays any expressive technique (e.g., the amount
of force applied in string muting, hand positioning or pick positioning).

6.2.2 Hardware and embedded implementation

The classifiers trained for these studies were deployed on a Raspberry PI4 (RPI4) 4
Gb single board computer running the Elk Audio OS [24]. The choice of a single-
board computer is justified by the compact size of the hardware and reasonable
power consumption, along with the rather satisfactory computational power of this
most recent model. The input and output audio signals were handled with the Elk-
PI Hat development board, which performs AD/DA conversion. However, given
the requirements of these experiments, similar results can be reproduced with just
a RPI4 Board and an Elk audio OS compatible ADC/DAC board (e.g., HifiBerry
DAC+ ADC Pro).

To measure the onset-to-results latency, test data recordings were played on a
computer and fed to the board through the output of a USB audio interface (Focusrite
Scarlett 2i2). At the same time, the stereo output from the board was recorded
through two inputs of the audio interface. The left channel contained a passed-
through version of the guitar signal fed to the classifier, while the right contained a
set of reference spikes in correspondence with the time at which the classifier produced
its prediction for each note. Measuring the interval between each note onset in the
left channel and the relative spike in the right channel allowed us to measure the total
“software” latency of the system in a more reliable way than previous methods [80].
The measurement excluded any hardware or buffering latencies that can differ based
on the specific implementation and DAC / ADC hardware used, as they were not
relevant to the study.

6.2.3 Software

The basic intuition behind the classification pipeline used for these experiments is
not dissimilar to the work presented in [80]. In particular, expressive guitar tech-
nique recognition is performed on a per-note basis, and the classification is composed
of three separate steps (i.e., onset detection, feature extraction, and classification),
which is preferable to an end-to-end neural approach in the embedded real-time con-
text (See Chapter 3). At the end of the pipeline, the extracted features are fed to

123

6.2. Experimental Setup and Motivation

a neural classifier that can predict a higher-level property such as expressive guitar
technique starting from timbral features. Onset detection is used to trigger feature
extraction, which is delayed to gather a sufficient amount of audio signal. While
recent approaches in offline MIR employ end-to-end networks that operate directly
on the raw audio signal and learn their own internal features, this can be challeng-
ing for a real-time embedded approach that tries to limit computation requirements
and latency. On the contrary, timbral features such as MFCC can be extracted in
real-time with a reasonable amount of computational power.

With respect to our previous research, numerous improvements were made to the
classification pipeline. The main improvements are the following:

• Onset detection was optimized for both accuracy and latency with an evolu-
tionary algorithm, as described in Chapter 4. The onset detection accuracy and
F1-score achieved are respectively 90.98% and 95.28%.

• Instead of extracting 1D feature vectors from a single, small signal window,
now 2D matrices of features are extracted from overlapping windows. This
allows the classifier to receive more information about timbre and its temporal
evolution in the very first milliseconds of the note.

• The classifier was changed from a 1D-input fully connected neural network to
small 2D convolutional neural networks. These proved to be more accurate and
efficient than the previous approach. The source code of a 2D-input wrapper
for the TFLite library was made available online 1.

Other than improvements to the software pipeline, the conceptual differences with
the previous studies are highlighted in Sections 6.2.4, 6.2.5, and 6.2.6.

Onset detection

For onset detection, we used the Aubio library [128] implementation of the Modified
Kullback-Leibler (MKL) distance function with Adaptive Whitening [123] disabled,
whose parameters were optimized for both accuracy and latency with an evolutionary
algorithm (see [135]). As a result, we measured an accuracy of 90.98% and an F1-
score of 95.28% on the main dataset. On the smaller extra test dataset, the accuracy
and F1-score of the onset detector were 95.72% and 97.81%, respectively.

1https://github.com/CIMIL/cpp-deep-inference-wrappers

124

https://github.com/CIMIL/cpp-deep-inference-wrappers

Chapter 6. Embedded Real-Time Expressive Guitar Technique Recognition

Feature extraction

For the feature extraction step, we used a set of timbral extractors from the Tim-
breID Pure Data (Pd) library [27], which were converted to C++ classes and made
compatible with the Juce framework for audio plugins. The extractors used for the
classification pipeline are MFCC, BFCC, Bark Spectrum, Bark Spectral Brightness,
Real Cepstrum, Peak Sample, Attack Time, and Zero Crossing Rate. For each note,
features are extracted throughout the feature window interval. The feature window
is composed of a number of overlapping sub-windows, each of which is 256 samples
long and overlaps by 50% with the neighboring sub-windows. The first sub-window
is overlapped by 50% with the signal that comes before the beginning of the feature
window, while the last overlaps with zero padding. The number of sub-windows is
determined by the overall feature window length. Figure 6.1 shows the case of the
704 samples feature window (11 blocks of 64 samples), which contains 6 sub-windows.
For each overlapping sub-window, the aforementioned extractors produce a vector of
271 feature values.

To preserve the characteristics of the feature extraction process, the first part
of the classification pipeline (i.e., onset detection and feature extraction) was also
compiled as a separate VST plugin and executed on a computer to extract features
from notes in the training dataset. This ensures that the feature extraction process is
the same between the training and the deployment phases. However, in the extraction
phase, the plugin can be executed considerably faster than real-time, to reduce the
time needed to process the dataset. The feature extraction plugin was provided with
the ability to save the extracted matrices as flat vectors in Comma-separated values
(CSV) text format. The source code for both the C++ version of part of the TimbreID
library and the feature extraction plugin is available as open source on GitHub 2.

Classifier Training and testing

The neural models used for each experiment were trained and tested using Keras and
TensorFlow on a Jupyter Notebook environment. Later, final models were converted
to the TFLite format and deployed on the embedded board, where latency was mea-
sured and the accuracy of the system was compared with the test accuracy measured
on the notebook. This ensured the correctness of the conversion process and cross-
validation procedure. In particular, this part of the process allowed us to identify the

2https://github.com/CIMIL/cpp-timbreID

125

https://github.com/CIMIL/cpp-timbreID

6.2. Experimental Setup and Motivation

Time

Feature Computation Time

Future (Zero-padding) overlap
Feature Window

Past signal for initial overlap

Onset Time

W2 W3 W4W1 W5 W6

Figure 6.1: Overlapped feature extraction for the 704-samples feature window. Here
six sub-windows of 256 samples each (four audio blocks), with 50% overlap are spaced
across the entire feature extraction window (704 samples) plus a part of the pre-onset
signal and zero-pad blocks for the part on the right of the feature computation instant.
Hann windowing is used for the subwindows.

Guitar/player effect (see Section 6.1), when models that previously showed over 95%
accuracy on regular 5-Fold cross-validation, resulted in poor performances on new
data. To find the optimal model for each experiment condition, the Python train-
ing notebook was converted to a script, and several hyperparameters were exposed
as command-line arguments. The script was used to perform a grid search over a
range of values for each hyperparameter, and the best model was selected based on
the recognition accuracy. The hyperparameters optimized are the following: learning
rate, batch size, training epochs, number of input features for automatic selection,
number of convolutional layers, kernel size per layer, stride per layer, number of fil-
ters per layer, layer activations, pooling layer type, number of fully-connected layers,
number of neurons per Dense (i.e., fully-connected) layer, and dropout rate. Multiple
rounds of grid search were performed for each experiment condition, starting from a
coarse grid and progressively refining the search space. The code and data used to
train the classifiers is available on GitHub as well3.

3https://github.com/CIMIL/ExpressiveGuitar-TechniqueClassifier

126

https://github.com/CIMIL/ExpressiveGuitar-TechniqueClassifier

Chapter 6. Embedded Real-Time Expressive Guitar Technique Recognition

6.2.4 Experiment 1: Recognition accuracy with respect to

Latency constraints

The target “repurposing” application of a real-time expressive technique recognition
system, i.e., the way that the classification results are used, determines the maxi-
mum tolerable latency for the user. In turn, this affects how long the system can
analyze the audio signal from the onset of a note before having to produce a clas-
sification on the currently available context. In a sound-to-sound application, (i.e.,
where the classification made on the incoming audio controls sound generation or
processing) latencies as little as 10 milliseconds can be the maximum tolerable delay
between action and sound for players [116]. However, there are application scenarios
where recognition results are used for less time-critical control parameters of a sound
synthesis engine, while note triggering is performed through quicker pitch trackers
and envelope followers [53]. In this case, the latency of the recognition system can
be increased to allow for more accurate classification results, without affecting the
perceptual quality of the instrument. Other applications can include sound-to-video
systems, where the use of different expressive techniques can trigger or affect live
visuals, in conjunction with continuous measures such as signal amplitude or pitch.
In such applications, video artists might desire a system with a latency that matches
the frame rate of the video output, which is typically 30 or 60 frames per second (i.e.,
33 or 16 ms). However, this would be a requirement only when using fast-paced video
animations or effects. For more relaxed musical styles, musicians and visual artists
may steer towards slowly evolving visuals, in which case they may be willing to trade
off some latency for better recognition accuracy. This can also apply to applications
that control stage equipment over the network, such as lighting, smoke machines, or
other stage effects [25].

These requirements indicate that the end-users or the developers of these re-
purposing applications could benefit from real-time recognition systems that offer
a flexible choice of the tradeoff between how accurate and how reactive the system
is. In light of this, we optimized and trained four classifiers with respectively four
target latencies of 15, 45, 75, and 100 milliseconds. We observed how 15 milliseconds
is the minimum latency that can provide reasonable accuracy with our approaches
and data, while 100 milliseconds was a reasonably large delay that we consider to be
greater than the maximum tolerable latency for most musical tasks, even under the
most relaxed constraints. The target latencies of 45 and 75 milliseconds were chosen

127

6.2. Experimental Setup and Motivation

Ba
tc

h
N

or
m

.

C
on

v.
 2

Ba
tc

h
N

or
m

al
iz

at
io

n

C
on

v.
 1

D
en

se
 1

 (F
ul

ly
 C

on
ne

ct
ed

)
+

ac
tiv

at
io

n
(R

eL
U

)

D
en

se
 2

+
ac

tiv
at

io
n

(R
eL

U
)

Ba
tc

h
N

or
m

.

Ba
tc

h
N

or
m

.

O
ut

 (8
)

So
ftM

ax

MaxP
ool Fl

at
te

n

MaxP
ool

Figure 6.2: General structure of the classification networks. First, a set number of
2D convolutional layers process the input feature matrix, and they are interleaved
with batch normalization and pooling layers. Then the data is flattened and passed
through a set number of fully connected layers, which are also interleaved with batch
normalization, and dropout is used for further regularization. Finally, the last layer
applies the softmax function to the output. The numbers and types of hidden layers
are part of the hyperparameters that were found via grid search (see Table 6.1). For
example, only one parametrization out of the four latency configurations included two
convolutional layers.

by dividing the range between the two extremes and rounding the result. For each
condition, the main effect of a different target latency is on the length of the feature
extraction window. The longer the window, the more information is available to the
classifier, but this also increases the latency. In this case, for the four conditions,
the window length was set to 704, 2112, 3456, and 4800 samples respectively, with a
sample rate of 48kHz. Each value is an integer multiple of the audio block size used
(i.e., 64 samples). With the windowing procedure described in Section 6.2.3, the four
experiment settings correspond to extracted feature matrices of sizes (271×6), (271×17),
(271×28) and (271×38) for each note respectively.

For each condition, the classifier was optimized through grid search resulting in
different CNN architectures. The best-performing model for each condition is shown
in Table 6.1. Additionally, Figure 6.2 shows the model structure. The accuracy was
evaluated through Guitar/Player cross-validation (see Section 6.2.5), where the data
was split into 7 folds corresponding to data from the 7 guitar/player pairs in the
dataset. For each fold, the model was trained on the other 6 folds and tested on
the selected data, so that the test guitar/player pair was never used for training.
Resulting metrics are averaged over the 7 folds.

Once the best model for each configuration was found, these were converted to

128

Chapter 6. Embedded Real-Time Expressive Guitar Technique Recognition

Table 6.1: Optimal values found for the hyperparameters of each classifier configura-
tion for Experiment 1 and the resulting number of weights.

Feature Window Size

Parameter 704 2112 3456 4800

Learning-rate 8.0e-05 1.0e-04 1.0e-05 1.0e-04
Batch-size 64 64 128 128
Training Epochs 500 600 600 300
Features (per subwindow) 271 200* 200* 200*

Tot features 1626 3400 5600 7600
Num. of Conv layers 2 1 1 1
Conv. kernel sizes 3x3,3x3 5x5 5x5 5x5
Conv. strides 1,1 2 2 2
Conv. Num. filters 4,4 32 64 32
Conv. Activations relu,relu relu relu relu
Pooling layer types Max,Max Avg Avg Max
Num. of Dense layers 2 None None None
Width of Dense layers 32 16 16 16
Dropout rate 0.5 0.5 0.5 0.5

Model weights 10,404 52,168 181,128 116,168

* The number of features computed for each subwindow is 271 and is determined by the size of
the subwindows and filter spacing for different extractors. However, feature selection was found
to be successful, via hyperparameter optimization, for the three configurations 2112, 3456, and
4800. In particular, a value of 200 features performed the best.

the TFLite format and deployed on the embedded board. The latency of the whole
pipeline was measured by feeding guitar recordings to the input of the system while
recording the output of the board. The output is composed of a copy of the clean
input signal, and a reference signal, which allowed us to accurately measure the
total latency (see Section 6.2.2). Furthermore, software probes that employed a
steady clock allowed us to break down the total delay between the note onset and the
classification results into its main components, namely the onset detection latency
(τOD), the post-onset delay (τPOD) introduced to properly delay feature computation,
the feature extraction or computation latency (τFE) and the classification latency
(τDNN). A graphical representation of the time instants and corresponding intervals
is shown in Figure 6.3.

129

6.2. Experimental Setup and Motivation

TOD TPOD TFE TDNN

TTOT

Time Intervals:
- TTOT : Total classification time
- TOD : Onset detection latency
- TPOD : Post Onset Delay
- TFE : Feature Extraction time
 (computation)
- TDNN : Time for Classification of
 features with Neural Network

Time Instants:
- IA : Onset
- IB : Detection of the onset
- IC : Beginning of feature extraction
- ID : Beginning of Classification
- IE : End of classification

A B C D E

Feature Analysis Window

Figure 6.3: Representation of the time intervals that compose the total latency of
the system. The total onset-to-results latency corresponds to the sum of the Onset
detection latency, the post-onset delay used to align the feature window, the feature
computation latency, and finally the classifier inference time.

130

Chapter 6. Embedded Real-Time Expressive Guitar Technique Recognition

6.2.5 Experiment 2: Guitar/Player effect and generalization

performance

This experiment focuses on the generalization performance of the system with respect
to the amount of data available. For this, we started from one of the configurations of
Experiment 1 (i.e., the lowest latency, 704 samples configuration) and measured the
performance of the system with both regular stratified 5-fold cross-validation and a
different Guitar/Player cross-validation. Moreover, we trained and tested the classi-
fier starting from a single guitar/player pair and progressively adding the remaining
pairs one at a time. This was done to assess whether the amount of data available to
us is a limiting factor for the performance of the system and to roughly estimate the
amount of data required to achieve a certain level of performance.

For the regular stratified k-fold cross-validation measurement, the sci-kit learn
StratifiedKFold utility was used to create 5 folds where the percentage of sam-
ples from each class was preserved from the original dataset. Instead, for our Gui-
tar/Player cross-validation, the data is split into 7 folds corresponding to data from
the 7 guitar/player pairs in the dataset. In this sense, Guitar/Player cross-validation
is a special case of Group K-Fold cross-validation, where each fold contains exactly
one guitar/player pair. This way, the model is not only tested on data that was not
seen during the training, but also that was played by different a guitar/player pair
than those in the training set.

Regular 5-fold cross-validation was repeated starting from a single guitar/player
pair and up to all 7 pairs. For the Guitar/Player cross-validation instead, the mini-
mum number of guitarists in the dataset is two, to always have at least one pair for
testing only.

We choose to use the quickest and lowest scoring configuration because Exper-
iment 2 requires a large number of measurements and training sessions, and this
configuration could be trained on a single Laptop GPU (i.e., Nvidia GeForce GTX
1650 Ti) with low energy consumption and carbon footprint. On the contrary, the
two configurations with the largest feature windows for Experiment 1 needed to be
trained with a more powerful GPU (i.e., Nvidia GeForce RTX 3090) because of the
larger memory requirement.

131

6.2. Experimental Setup and Motivation

6.2.6 Experiment 3: Specialization performance and the

“Guitarist’s Touch”

Once we assessed the generalization capabilities of the system, we set to measure
its performance on a specific single instrument. It is not unreasonable in fact, for
an embedded recognition system for an SMI to target a specific instrument rather
than focusing on performance across different instruments. In this context, we set to
verify whether adding data from different guitar/player pairs would affect recognition
accuracy. This can be a useful result because, in the case that the data from a single
instrument is limited, it can inform whether it is possible to integrate data from
different conditions, or if it is necessary to collect more data. In order to do this
we recorded extra data (see Section 6.2.1) for Guitar#1 and a player that we will
refer to as Player-A from now on. The pair Guitar#1/Player-A was already present
in the main dataset. The final model for the chosen configuration (i.e., 704 samples
feature window) was first trained on the main dataset recordings for only the pair
Guitar#1/Player-A, and tested on the extra data for the same pair. Then, the model
was trained and tested six more times by progressively adding the six remaining pairs
to the training set only.

Additionally, we set to evaluate the performance of these trained models on the
same instrument (i.e., Guitar#1) but with a different player (i.e., Player-B) that was
not present in any recording of the main dataset. Although limited in its extent, this
experiment can help to understand whether the performance of a real-time expressive
guitar technique recognition system can be affected by a certain degree of “guitarist’s
Touch”. Guitarist’s touch is a term used to describe the subtle differences in the way
different musicians play the instrument [179]. While the existence of the guitarist’s
touch is undoubted, it is yet to be verified whether the differences in the way a
musician intends and plays certain expressive techniques can affect the sound of the
instrument in the very first milliseconds of played notes. This can help to inform a
future in-depth study on the matter that could, in turn, drive relevant choices in how
to integrate new recordings into our dataset, or the creation of new datasets that are
specifically targeted to a single instrument.

132

Chapter 6. Embedded Real-Time Expressive Guitar Technique Recognition

6.3 Results and Discussion

6.3.1 Experiment 1: Recognition accuracy with respect to

Latency constraints

The results of Experiment 1 are shown in Figures 6.4 and 6.5. The first plot shows
the recognition accuracy across the eight techniques and the latency of the different
configurations of the system, while the second shows the F1-score for each technique.
Accuracy and F1-score values reported are averaged over 7-fold Guitar/Player cross-
validation (see Section 6.2.5). The total latency is broken down into its components,
as described in Figure 6.3.

The accuracy results show a clear increasing trend with the increase of the feature
window (therefore latency). However, The greatest increase in accuracy is observed
between the 704 and 2112 window configurations, with marginal improvements with
longer windows. Figure 6.5 offers better insight into why this is the case. In partic-
ular, we see how the performance for all techniques increases between the first two
configurations, indicating that 704 samples at 48kHz may be a very limited context
to capture most of the expressive techniques, but the most sizable performance jumps
are seen with pitched techniques and natural harmonics in particular. This can be
attributed to the more complex nature of pitched techniques and the pitch variations
in the data.

Moreover, natural harmonics are played by plucking the muted string and imme-
diately releasing the finger, which is a fast action that often is detected as two onsets,
making it difficult to align the feature window. While the first action is always de-
tected as the main onset, and the second suppressed by a debouncing mechanism, the
more interesting timbre content happens only after the second onset. This can ex-
plain how longer windows, which include this additional context, can largely improve
the performance with natural harmonics. A more in-depth analysis of the Natural
Harmonic false negative notes shows that these are generally confused with other
pitched techniques, and to a lesser degree with the Snare-1 technique. This seems to
change depending on the guitar/player pairs.

With longer feature windows, the performance of pitched techniques tends to in-
crease less and stagnates in some cases, but the performance of percussive techniques
tends to decrease. This can be due to percussive techniques generating sounds with

133

6.3. Results and Discussion

shorter decay and more information around the early attack phase of the signal.
While adding more context should not affect the performance of percussive tech-
niques, trying to classify pitched sounds may cause the network to favor focusing on
the whole feature window instead of the sole attack.

In terms of the latency results measured on the embedded implementation, the
impact of the classifier inference (TDNN) is less relevant with greater feature windows.
Moreover, most of the latency in the configurations with 2112, 3456, and 4800 is
constituted by the post-onset delay (TPOD), which is used to align the feature windows
with the onset and depends on both its size and TOD. The onset detection delay
(TOD) remains the same as the configuration of the detector was not changed, but
the composition of the total latency shows how we could have different onset detector
settings with more latency and greater accuracy and reduce TPOD without affecting
the total latency. Finally, the time required by the actual computation of the feature
matrices (TFE) is negligible, as most of the computations are simple and performed
when each audio block of 64 samples is added to the buffer.

6.3.2 Experiment 2: Generalization performance and the

“Guitarist/Player effect”

The results of Experiment 2 are shown in Figure 6.6. The plot shows the recogni-
tion accuracy of the 704 sample feature window configuration, trained and tested
on a progressively larger dataset, where guitar/player pairs are added one at a time.
Striped bars represent the average results obtained with regular Stratified 5-fold cross-
validation, where all the data from the selected guitar/player pairs is mixed and each
sample is eligible to become part of any of the 5-folds. Conversely, blue bars represent
the results of Guitar/Player cross-validation, where data from each guitar/player pair
constitute a separate fold. As a consequence, the rightmost blue bar corresponds to
the first bar of Figure 6.4, while the remaining bars represent the performance of the
model trained on fewer data. The takeaways from the results of Experiment 2 are
the following:

1. Generalization performance increases with the addition of data from more gui-
tars and players, but the current size of the dataset is limiting;

2. The performance averaged over regular 5-fold cross-validation is misleading as it
decreases with the increase of the real generalization capabilities of the classifier.

134

Chapter 6. Embedded Real-Time Expressive Guitar Technique Recognition

Figure 6.4: Recognition accuracy and latency of the four configurations for Experi-
ment 1. For each configuration, a different feature extraction window length is used,
impacting both the accuracy and latency of the system. The total latency is reported
along with a breakdown of its different components, as described in Figure 6.3.

Takeaway 1 highlights an expected increase in the performance of the model, but it
indicates that the task of generalization over multiple guitars and players is complex,
and having only seven guitar/player pairs in the dataset is limiting the potential
recognition performance. Furthermore, the unstable increase in performance might
suggest that, for this task, a satisfactory number of guitar/player pairs would be
considerably higher than seven. These results suggest how future efforts should either
be directed at increasing the size of the dataset, or at investigating the possibilities of
specializing the trained models on a single instrument with techniques such as layer-
freezing and fine-tuning, or domain adaptation. While doing network fine-tuning
with a whole new set of data from the target instrument would defeat the purpose
of a generalization experiment, using a small and possibly unlabeled set recorded on
the fly would be a reasonable way to adapt the pre-trained model in the real-world
scenario.

Takeaway 2 highlights how using a cross-validation procedure that is not grouped

135

6.3. Results and Discussion

704 2112 3456 4800
Feature Analysis Length (samples)

0.0

0.2

0.4

0.6

0.8

1.0

F1
-s

co
re

Kick
Snare1
Tom
Snare2
NatHarm
PalmMute
BridgeP
SoundholeP

Figure 6.5: F1-score for each expressive technique and each configuration of Ex-
periment 1. Dotted lines represent percussive techniques, while solid lines represent
pitched techniques (see Section 6.2.1).

by guitar/player pair can be misleading, as it shows a high recognition accuracy when
the model overfits the specific characteristics of the guitars and players in the dataset.
This becomes detrimental to the real generalization performance of the classifier when
recognition accuracy measured with non-grouped cross-validation is used to drive
hyperparameter optimization and model selection. In this case, even on the smallest
analysis window, we observed the insurgence of a Guitar/player effect that fosters
the overfitting of the model to the specific characteristics of the known guitars and
players rather than learning the general properties of the expressive techniques.

6.3.3 Experiment 3: Specialization performance and the

“Guitarist’s Touch”

The results of Experiment 3 are shown in Figure 6.7. The plot shows the recognition
accuracy of the 704 sample feature window configuration, trained starting from a
specific guitar/player pair (i.e., Guitar#1/Player-A) and tested on extra data from
the same instrument but two players separately (i.e., Player-A and Player-B). Fur-
thermore, the classifier is progressively trained on data from the other guitar/player

136

Chapter 6. Embedded Real-Time Expressive Guitar Technique Recognition

1 2 3 4 5 6 7
Number of guitar/player pairs in the dataset

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

0.
88

0

0.
84

4

0.
83

7

0.
82

3

0.
79

1

0.
78

4

0.
76

2

0.
45

0 0.
54

0

0.
50

2

0.
57

4

0.
61

4

0.
60

1

Regular 5-Fold Stratified Cross Validation
Guitar/Player Cross Validation

Figure 6.6: Average recognition accuracy of the 704-samples configuration of the clas-
sifier depending on the number of guitar/player pairs in the dataset used to train
and test the model. Striped bars represent the accuracy for 5-fold cross-validation,
while blue bars represent Guitar/Player group cross-validation. Guitar/Player cross-
validation is not performed for one pair since it requires at least two pairs, which are
kept separate between training and test.

pairs in the main dataset. While Player-A is always in the training set for each
model, Player-B did not record any data for the main dataset. The main results of
Experiment 3 are the following:

1. The model trained only on data from Guitar#1/Player-A performs consider-
ably better on extra data from the same pair than on new guitar/player pairs
(see Experiment 1 results in Section 6.3.1);

2. Adding data from other guitar/player pairs to the training set is detrimental
to the performance of the model on the specific Guitar#1/Player-A pair. This
indicates that specific guitar/player data is preferable over data quantity;

3. Most importantly, the model trained on Guitar#1/Player-A performs consis-
tently worse when a new (unknown) Player-B plays the same instrument. This

137

6.3. Results and Discussion

1
(Player A

 Guitar #1)

2 3 4 5 6 7

Number of training guitar/player pairs

0.0

0.2

0.4

0.6

0.8

1.0

Te
st

 A
cc

ur
ac

y

0.
77

9
0.

68
4

0.
75

1
0.

62
1

0.
65

2
0.

59
5 0.

72
4

0.
60

8 0.
69

1
0.

57
1 0.

67
7

0.
53

9 0.
67

1
0.

55
5

Test on known pair Guitar #1/Player A
Test on new pair Guitar #1/Player B

Figure 6.7: Test accuracy for Guitar#1 with respect to the number of guitars in
the training set. Green bars represent the accuracy of the system on the extra data
recorded by the known Player-A, while red bars indicate the performance for the new
Player-B.

suggests that the “Guitarist’s Touch” could be a relevant factor for the perfor-
mance of an expressive guitar technique classifier.

The first result is to be expected, but it is still useful to verify that the classifier is
not overfitting on the specific data samples from the main set, since the extra test set
was recorded months later, with a different pick, cables, and slightly different guitar
settings (e.g., neck bow, volume setting). Independence on these factors is a key
characteristic of a proper playing technique classifier. Additionally, this can highlight
how the generalization metrics of Experiment 1 are not relevant when designing a
classifier for a specific instrument and player. Takeaway 2 instead highlights how
adding training data from new guitar/player pairs cannot help the specialization

138

Chapter 6. Embedded Real-Time Expressive Guitar Technique Recognition

performance for a target pair. Finally, Takeaway 3 suggests how differences between
the guitars used are not the only factor that can hinder recognition performances. In
particular, the ways that different musicians play the same techniques differently (i.e.,
the “Guitarist’s Touch”) seem to affect the recognition performance of a real-time
expressive guitar technique classifier, even with the very short context considered.
While the limited extra data used for Experiment 3 does not allow for a conclusive
analysis of the Guitarist’s Touch impact on the task, the consistency of the results
suggests that this factor is relevant and should be investigated in-depth in future
work.

6.4 Summary

In this chapter, we presented a flexible-latency embedded real-time expressive gui-
tar technique classifier. Moreover, we investigated the impact of the task require-
ments and data characteristics on recognition performance. We found that relaxing
the latency constraints, especially between 15 and 45 milliseconds, can benefit the
recognition accuracy for pitched and percussive techniques, while the performance
for percussive techniques is mostly unaffected and even slightly degraded with larger
feature windows. Additionally, we observed a tendency for models to overfit specific
guitar and player characteristics even on very small signal windows, limiting their
ability to learn the broader properties of expressive techniques and the generaliza-
tion performance on new instruments and players. We successfully addressed the
issue by employing grouped k-fold cross-validation to ensure that guitar and player
pairs remain separate during training and testing, which provides a reliable accuracy
metric to drive hyperparameter optimization. On the contrary, the accuracy metrics
obtained with simple k-fold cross-validation were revealed to be misleading as they
increased with the decrease in real generalization performance. Finally, we focused on
a single instrument and found how this can expectedly lead to better performance,
but also how the different touch, or style, of different guitarists, is likely to affect
the recognition performance. The classifier was designed for low latency on resource-
constrained embedded devices, and it was implemented and successfully deployed to
a single-board computer. The limitations of this study are in the limited size of the
additional dataset used for the experiment on the guitarist’s touch, and the focus on
the sole recognition of attack-based techniques on monophonic signals. Polyphony
can be addressed with the use of a special hexaphonic pickup. Furthermore, the

139

6.4. Summary

embedded real-time recognition of more techniques could be enabled through the in-
tegration of more features on multiple time scales. Finally, observing the effect of the
“Guitarist’s Touch” on recognition is going to inform a more thorough investigation
and the integration of new data in the expressive guitar technique dataset.

140

Chapter 7

Real-Time Embedded Deep Learning
on Elk Audio OS

As mentioned in previous chapters, notable progress has been made, in recent times,
in deep learning architectures tailored for music. This coincides with the recent
availability of increasingly powerful embedded computing platforms designed for low-
latency audio processing tasks. These advancements have opened promising avenues
for the creation of innovative Smart Musical Instruments (SMIs) and audio devices
that harness deep learning models executed on compact embedded computers. De-
spite these promising prospects, we found a lack of instructions on how to effectively
deploy neural networks to many promising embedded audio platforms, including the
real-time Elk Audio operating system. Within this chapter, we define and present a
procedure for deploying deep learning models on embedded systems leveraging the
Elk Audio OS. This procedure encompasses the entire deployment process, from es-
tablishing a compatible code project to its execution and diagnostic evaluation on
a Raspberry Pi. Additionally, we discuss various approaches for executing real-time
deep learning inference on embedded devices and offer viable options for managing
larger neural network models. To streamline implementation and facilitate future up-
dates, we provide an online repository featuring an elaborate guide, code templates,
functional examples, and precompiled library binaries optimized for the TensorFlow
Lite and ONNX Runtime inference engines (IEs). This work aims to bridge the

141

7.1. Introduction

existing gap between the development of deep learning models for audio and their
practical deployment on embedded systems, thereby promoting the development of
self-contained digital musical instruments and audio devices with real-time deep learn-
ing capabilities.

This chapter describes the contribution presented at the 4th International Sym-
posium on the Internet of Sounds [180].

7.1 Introduction

In recent years, notable advancements have been observed in deep learning archi-
tectures for audio processing [181, 182] and low-latency embedded computing plat-
forms [23,24,126,175]. Deep Learning has proved to be successful in modeling audio
effects [183], manipulating tone and timbre in new ways [182], and recognizing in real-
time high-level attributes of sound sources, such as for expressive playing techniques
recognition [80] or beat tracking [110].

Moreover, the growth in compute capabilities of embedded computers has spurred
the creation of various embedded audio platforms, including Elk Audio OS [24],
Bela [23], Prynth [101], Satellite CCRMA [102], and Axoloti1. Nevertheless, de-
veloping deep learning models for audio and deploying them on embedded platforms
require distinct skill sets with limited overlap. Specifically, deep learning requires the
following skills:

• Proficiency in high-level programming languages;

• Advanced understanding of the mathematical and probabilistic principles un-
derlying layers, activations, and various operators;

• In-depth domain knowledge concerning data and preprocessing, encompassing
relevant software and libraries for preprocessing tasks.

Conversely, deploying a model necessitates the following skills:

• Advanced knowledge of lower-level programming languages (typically C++ and
C);

• Advanced understanding of compilation and cross-compilation procedures;
1http://www.axoloti.com/, https://github.com/axoloti/axoloti

142

http://www.axoloti.com/
https://github.com/axoloti/axoloti

Chapter 7. Real-Time Embedded Deep Learning on Elk Audio OS

• Familiarity with audio processing and feature extraction libraries specific to the
programming language used. Alternatively, an advanced understanding of DSP
concepts and programming to effectively implement the required processing
routines.

In this context, we believe that any effort aimed at narrowing the gap between the
development and deployment phases in audio and music deep learning can foster the
creation of novel self-contained DMIs, such as SMIs [25] and other AI-equipped audio
devices. The emphasis on embedded platforms stems from the necessity to provide
SMIs with artificial intelligence capabilities through computing devices that can be
placed inside these instruments. SMIs represent an emerging category of musical
instruments that are a central component of the IoMusT, which is an extension of
the Internet of Things (IoT) paradigm to the musical domain [184]. As IoMusT
devices, SMIs are envisioned to be capable of communicating and becoming part of
a “network of interoperable devices” in order to share and receive musical content.

The capacity to conduct deep learning inference within SMIs constitutes a form
of “embedded intelligence” [25]. This embedded intelligence can be leveraged for real-
time audio processing, manipulation of sensor data, and extraction of high-level audio
properties or features, which in turn can be shared with similar instruments within
a IoMusT network [185]. In this interconnected scenario, embedded inference holds
particular significance since numerous real-time music applications cannot tolerate
the inherent latency introduced by cloud-based deep learning solutions.

Among the mentioned embedded platforms, Elk Audio OS [24] and Bela [23]
stand out as the most prominent and versatile systems within the open-source do-
main. Notably, recent efforts were directed at documenting a pipeline for deploying
neural networks specifically for Bela [186]. In contrast, while Elk Audio OS on the
Raspberry Pi 4 has proved to be a very capable platform for real-time deep learn-
ing [80,109,187], a documented procedure for deploying deep learning models on this
platform is currently lacking. This absence of documentation poses an obstacle to
the development of self-contained DMIs with intelligent functionalities.

In this chapter, we describe the steps required to deploy deep learning models to
the Elk Audio OS, specifically targeting a Raspberry Pi. Additionally, we provide an
online repository2 encompassing a comprehensive guide, code templates, and precom-
piled dependencies to facilitate the execution of deep learning inference with either
TensorFlow Lite or the ONNX Runtime IEs. These engines were selected based on

2https://github.com/CIMIL/elk-audio-AI-tutorial

143

https://github.com/CIMIL/elk-audio-AI-tutorial

7.2. Background

the comparison described in the previous Chapter. Furthermore, TensorFlow models
can be seamlessly converted to the Lite format, and models trained in alternative
frameworks such as PyTorch can be converted to the ONNX format.

We propose a procedure that uses the open-source framework JUCE to develop
VST plugins that can be executed on a Raspberry Pi 4 with the Elk Audio OS. This
enables developers and deep learning engineers to run real-time and offline audio
models on a SBC that can be embedded into instruments and standalone devices.
Moreover, a byproduct of learning the proposed procedure is that the reader will also
have the tools to compile deep-learning-equipped VST plugins for desktop and laptop
computers. This chapter describes a contribution presented at the 4th International
Symposium on the Internet of Sounds [180].

The remainder of this chapter is organized as follows. Section 7.2 discusses the
background and presents different works related to deep learning and embedded plat-
forms for audio. In Section 7.3 we discuss the tools required to follow the guide, and
the motivation behind these choices. Then, Section 7.4 presents an overview of the
deployment procedure to follow in order to create a JUCE project, cross-compile
plugins for Elk Audio OS, install the OS, configure its DAW and troubleshoot code
issues with real-time execution. Furthermore, Section 7.5 contains a few considera-
tions on the different modes of inference, i.e., offline, audio-rate real-time, and other
real-time approaches. Then, in Section 7.6 we present some additional applications
of this guide, and more broadly this thesis’ work. In particular, we focus on two
works in progress, started during a period of research at the Centre for Digital Mu-
sic, Queen Mary University of London. Finally, we summarize the work and draw
our conclusions in Section 7.7.

7.2 Background

The deployment of deep learning models onto embedded devices has gained consid-
erable traction and relevance in recent times. This surge can be attributed to a con-
vergence of factors, including the increase in computational capabilities of embedded
devices and SBCs, alongside noteworthy research advancements in Artificial Intelli-
gence (AI) for music [181], with a notable focus on real-time approaches [182]. The
increase in the availability of powerful embedded computers has fostered the devel-
opment of various open-source audio platforms, such as Elk Audio OS [24], Bela [23],
Prynth [101], and Satellite CCRMA [102]. Meneses et al. [175] conducted a thor-

144

Chapter 7. Real-Time Embedded Deep Learning on Elk Audio OS

ough comparison of some of these aforementioned open-source platforms, including
Prynth, Bela, and a customized processing unit, offering a comprehensive overview
of their respective strengths and limitations, without a clear standout winner. More
recently, Elk Audio OS was introduced along with an extensive comparative analysis
against similar platforms [24]. Furthermore, Vignati et al. [126] conducted a perfor-
mance comparison between the Xenomai Cobalt kernel (utilized by both Elk Audio
OS and Bela) and the more common Preempt RT kernel patch for Linux systems.
The results demonstrated superior overall performance of the former, especially under
heavy computational loads.

While most of the aforementioned platforms were not originally devised to perform
deep learning inference, recent efforts have successfully shown how integration is pos-
sible and can be made more accessible for deep learning developers [186]. Moreover,
the increased interest in embedding deep learning inference for audio into devices and
musical instruments has led to the creation of scientific workshops and events that
specifically focused on embedded AI. A notable example is the NIME 2022 workshop
Embedded AI for NIME: Challenges and Opportunities [26].

This work takes inspiration from recent research by Pelinski et al. [186], who de-
vised a deployment pipeline for deep learning on the Bela platform [23]. The pipeline
presented by the authors encompasses a tool for recording sensor reading datasets and
a cross-compilation environment, streamlining the deployment of deep learning mod-
els onto Bela. The authors articulated their goal to facilitate rapid prototyping and
experimentation with neural networks for real-time embedded musical applications
through this approach. Their proposed pipeline utilizes the TensorFlow Lite inference
engine, and they provide a Docker container for cross-compiling Bela-compatible deep
learning programs from a host computer. Similar efforts in this direction have been
made by other researchers, as seen in projects like Flucoma-Bela3. However, the work
by Pelinski et al. bears stronger relevance to our effort due to its clear deployment
process, catering to individuals without in-depth knowledge of low-level program-
ming concepts, and offering a prepackaged cross-compilation tool to streamline the
deployment process.

The main distinction of our work lies in its emphasis on a significantly different
platform: the real-time Elk Audio OS and the Raspberry Pi 4. While the combination
of Elk Audio OS and Raspberry Pi 4 has been previously utilized for deep learning
deployment [80, 109, 187], the intricate deployment process has not been formally

3https://github.com/jarmitage/flucoma-bela

145

https://github.com/jarmitage/flucoma-bela

7.3. Tools

documented. Furthermore, the Raspberry Pi 4 offers superior capabilities compared
to Bela’s hardware, enabling the execution of more demanding tasks, including AI-
based audio processing. Hence, we present code examples that perform inference at
the audio rate on the input signal (refer to Section 7.3.4), instead of the sensor data
processing example provided by Pelinski et al. .

In addition to this, we provided comprehensive templates and code examples for
both TensorFlow Lite and ONNX Runtime, aiming to streamline the deployment
process for a broader spectrum of deep learning frameworks.

7.3 Tools

7.3.1 JUCE and VST

JUCE is a cross-platform framework for audio plugins and applications. It is a C++
framework with a dual license (i.e., GPLv3 open-source and commercial). JUCE
embeds the VST3 SDK and Elk Audio provides support and instructions on how
to build a VST plugin for their OS starting from a JUCE project. The procedure
reported in this contribution, and in more detail in the project repository, was tested
with JUCE 6 (version 6.0.7).

7.3.2 Elk Audio OS

Elk Audio OS [24] is an embedded operating system designed for low-latency audio
processing on embedded hardware. Elk provides an open-source distribution for the
Raspberry Pi 4 SBC and a cross-compilation SDK. Elk offers support for additional
hardware platforms under a commercial license4. Moreover, older versions of Elk
Audio OS support the Raspberry Pi 3 (i.e., up to version 0.7.2 of Elk Audio OS).
The guidelines presented in this contribution refer to version 0.11.0 of Elk Audio OS.
Any variations in the deployment procedure for forthcoming versions of Elk Audio OS
will be documented in the project’s repository (refer to Section 7.3.4). In particular,
after the creation of this guide, version 1.0 of Elk Audio OS was released. Release
1.0 simplified some of the steps, which will be addressed throughout this Chapter.

4https://elk-audio.github.io/elk-docs/html/intro/supported_hw.html

146

https://elk-audio.github.io/elk-docs/html/intro/supported_hw.html

Chapter 7. Real-Time Embedded Deep Learning on Elk Audio OS

7.3.3 Choice of Inference Engine

Inference of deep learning models involves the procedure of providing input data to the
network and performing the necessary computations to generate an output prediction.
Typically, deep learning models are trained and validated on robust server machines
or PCs, utilizing high-level programming languages (e.g., Python) and deep learning
frameworks (e.g., PyTorch, TensorFlow). The training process demands significant
computational resources, often necessitating specialized acceleration hardware and
drivers (e.g., GPUs or TPUs). Conversely, inference is notably less computationally
intensive and can be optimized for deployment.

In recent years, companies and developers specializing in deep learning frame-
works have directed their attention towards in-device inference for edge and mobile
computing. Within the realm of IoT, edge computing offers a significant advantage
by processing essential computations closer to the point of data acquisition [188].

Furthermore, embedded in-device inference holds a distinct advantage in terms
of action-to-reaction latency. This is achieved by conducting inference computations
directly at the location where input data is gathered through sensors, eliminating the
latency associated with communication to one or more cloud servers. While in-device
computation may yield marginal advantages in certain IoT applications, it is an
essential requirement for music performance tools and numerous Internet of Musical
Things (IoMusT) systems [116]. This holds true even when the learning task allows
for slightly more flexible time constraints compared to audio-rate deadlines [80] (see
Section 7.5). For this reason, many deep learning frameworks have made available C
and C++ libraries known as inference engines. These engines facilitate efficient and
quick inference, particularly catering to resource-constrained embedded devices.

In Chapter 5 ([109]) we compared the performance and suitability of four of
these engines engines (TensorFlow Lite, ONNX Runtime, Torch+Torchscript, and
RT Neural) for audio deep learning tasks on a Raspberry Pi 4 running Elk Audio
OS. While the exact execution time can depend on a specific model and task, ONNX
Runtime and TensorFlow Lite were found to be quick, well-documented, and easy to
use. For the code templates in the repository that accompanies this contribution, both
TensorFlow Lite and ONNX Runtime were included separately. TensorFlow users will
find it extremely easy to export their model for the former, while models from most
frameworks can also be converted to ONNX, including PyTorch [109, 183, 189, 190].
Support for ONNX Runtime is particularly relevant as a large part of research on
black-box audio effect emulation is currently carried out using PyTorch, and PyTorch-

147

7.4. Deployment Procedure

to-TensorFlow model-conversion is not a straightforward process [109].
For TensorFlow developers, we suggest using the TensorFlow Lite template code,

while PyTorch and other developers should convert their models to ONNX and use
ONNX Runtime.

7.3.4 Project Repository

This contribution defines a procedure to successfully deploy deep learning models to
embedded devices running Elk Audio OS and perform inference. While this chapter
reports an overview of the deployment procedure, we provide a detailed guide, clean
source code templates, working examples, and inference engine binaries in order to
reduce the effort required for deployment. This substantial addition to the written
part of this contribution is contained in the elk-audio-AI-tutorial repository
on the GitHub page of the Creative, Intelligent & Multisensory Interactions Labora-
tory (CIMIL): https://github.com/CIMIL/elk-audio-AI-tutorial/ . The guide
available in the project’s repository provides a more detailed explanation of the de-
ployment process. It will be regularly updated to address potential changes in the
new version of Elk Audio OS or IEs.

7.4 Deployment Procedure

This section outlines the procedure for deploying a deep learning model on a Rasp-
berry Pi with the Elk Audio OS. It is worth noting that this same process can be
applied for deploying to a VST plugin (excluding cross-compilation and platform-
specific steps) across various platforms, including Windows, MacOS, and Linux. All
the necessary code and library binaries essential for following this guide are available
in the project repository (refer to Section 7.3.4). These resources allow readers to skip
parts of the guide for easier deployment (e.g., library compilation can be skipped if
using the provided binaries). Further updates, improved instructions, and additional
inference engines will be added to the detailed guide in the repository.

The instructions provided in this guide are based on the assumption of utilizing
a Unix-based OS (e.g., Ubuntu Linux). However, they are also applicable for users
operating on Windows through the Windows Subsystem for Linux (WSL) (Windows
Subsystem for Linux) or a Linux virtual machine. As previously mentioned, the
instructions in this chapter are tested with version 0.11.0 of Elk Audio OS. Nonethe-
less, the project repository will be updated to accommodate new versions of the OS.

148

https://github.com/CIMIL/elk-audio-AI-tutorial/

Chapter 7. Real-Time Embedded Deep Learning on Elk Audio OS

Figure 7.1 shows an overview of the entire deployment process.
The next sections will describe the following steps:

1. Creation of a JUCE project for the deployment of deep learning models on Elk
Audio OS (Section 7.4.1);

2. Cross-compilation of a plugin and its dependencies (Section 7.4.2);

3. Setup and communication with Elk Audio OS (Section 7.4.3);

4. Configuration of Elk’s DAW (Section 7.4.4);

5. Troubleshooting (Section 7.4.5);

7.4.1 Project creation

JUCE plugin projects can be created using the Projucer app, which is a component
of any JUCE distribution. The Projucer manages the project’s configuration, export
formats, build systems, and their respective configurations (known as exporters). Fur-
thermore, it automates the creation of build files for each exporter. Additionally, the
Projucer can execute a user-defined command each time a project is saved, referred
to as the post-export Shell command. It is also possible to use CMake to set up JUCE
projects, but this will not be covered by the guide.

The following two alternatives can be used to prepare a JUCE project to compile
VST plugins that will be compatible with Elk Audio OS:

• Use of one of the provided templates;

• Manual project creation.

Here we explain the two methods.

Templates

The project repository (refer to Section 7.3.4) contains two template projects, tailored
respectively for ONNX Runtime and TensorFlow Lite. These templates include the
precompiled dependencies and the project configuration (.jucer file). The project
configuration file ensures that the relative inference library is correctly linked, headers
are included and it creates a cross-compilation script for Elk Audio OS.

149

7.4. Deployment Procedure

Users should open the .jucer file using the Projucer and save the project,
thereby creating the essential build folder structure. Subsequently, for any alterations
in the project’s configuration (e.g., renaming the project), the .jucer file should be
saved from the Projucer app. Furthermore, users are expected to modify the template
code responsible for loading an inference model and executing inference to align with
their specific requirements. This customization should be done in accordance with
the documentation provided for each engine5.

Importantly, while Elk Audio OS exclusively manages headless plugins (i.e., with-
out a graphical user interface (GUI)) to optimize processing latency, there is no
imperative to remove any GUI code from the plugin editor, as the graphic routines
will simply not be called by the Sushi DAW.

Manual Creation

The manual steps required to create a JUCE project for a VST plugin compatible
with Elk Audio OS are as follows:

1. Creation of a JUCE project for an audio plugin;

2. Editing of project settings for compatibility with Elk Audio OS;

3. Addition of external library binaries and headers (e.g., TensorFlow Lite or
ONNX Runtime);

4. Creation of a Linux exporter;

5. Creation of a cross-compilation script.

Comprehensive details regarding the manual project creation steps can be found
in the up-to-date guide available within the project repository.

7.4.2 Cross-compilation for Elk Audio OS

Deploying a plugin on Elk Audio OS, particularly for resource-constrained devices like
Raspberry Pi, typically involves cross-compilation. Cross-compilation is a technique
where source code is compiled using a cross-compiler on a host computer, producing
a binary file executable on a target computer with a distinct architecture from that

5https://www.tensorflow.org/lite/guide/inference#load_and_run_a_model_
in_c https://onnxruntime.ai/docs/get-started/with-cpp.html

150

https://www.tensorflow.org/lite/guide/inference#load_and_run_a_model_in_c
https://www.tensorflow.org/lite/guide/inference#load_and_run_a_model_in_c
https://onnxruntime.ai/docs/get-started/with-cpp.html

Chapter 7. Real-Time Embedded Deep Learning on Elk Audio OS

of the host. This enables the generation of binary executables for embedded devices
from a host machine with more powerful hardware. Although native compilation on
the Raspberry Pi is feasible, it is not recommended except as a last resort, primarily
due to the limited available resources which result in extended computation times
(i.e., tens of hours for most engines).

We achieved successful cross-compilation using an x86-64 Linux computer as the
host, while the target was an ARM 64bit SBC (aarch64 architecture) running the
Linux-based real-time Elk Audio OS. To conduct cross-compilation for any program
intended for a Raspberry Pi with Elk Audio OS, users should install and use the
appropriate Elk-PI SDK corresponding to the chosen OS version6.

It is not necessary to proceed with the next step, i.e., Dependencies Compilation
when compiling a project that solely relies on the chosen inference library, as the pre-
compiled binaries are included in the project repository (Section 7.3.4).

Two additional possibilities would have been to prepare a Docker image for cross-
compilation or a dedicated Yocto recipe. Both alternatives were reportedly made
easier with version 1.0 of Elk Audio OS.

Dependencies Compilation

To perform cross-compilation of a plugin, it is necessary to compile all its external
dependencies. In the case of a basic plugin incorporating deep learning inference, the
only direct dependency is the inference engine library, such as TensorFlow Lite or
ONNX Runtime. However, more complex projects may require additional libraries
for STFT computation, feature extraction, and more. Moreover, each direct depen-
dency might have sub-dependencies that must be included for compilation (See the
TensorFlow Lite template in the project’s repository).

Cross-compiling dependencies can however be intricate and may not always be
feasible. Setting up cross-compilation, especially for libraries lacking appropriate
cross-compilation support, inadequate documentation, or utilizing less recognized
build systems, can be challenging. Libraries that rely on the CMake7 build automa-
tion system can generally be integrated effectively with Elk’s toolchain. The key
steps for cross-compiling such libraries are as follows:

1. Downloading and installing the Elk-PI SDK;

6https://github.com/elk-audio/elkpi-sdk/releases
7https://cmake.org/

151

https://github.com/elk-audio/elkpi-sdk/releases
https://cmake.org/

7.4. Deployment Procedure

2. Downloading the library source code for the desired version;

3. Creating a build folder;

4. Resetting the LD_LIBRARY_PATH variable and sourcing the Elk-PI SDK;

5. Executing CMake from the build directory:
cmake path/to/CMakeLists/dir/ ;

6. Compiling with make .

An example demonstrating these concepts for the TensorFlow Lite is available in
the project’s repository (refer to Section 7.3.4). This example serves to showcase
how the actual compilation procedure may deviate from the expected ideal process,
often due to unique characteristics of certain sub-dependencies or encountered bugs.
In particular, for TensorFlow Lite 2.11.0, specific adjustments are necessary. These
include modifying the version of the dependency FlatBuffers from 2.0.6 to 2.0.8
and overriding the CMAKE_SYSTEM_PROCESSOR variable. The Elk toolchain initially
sets this build variable to cortexa72 , but the Abseil dependency requires it to
be aarch64 to prevent incorrect library linking. These corrections were informed
by insights gathered from the comments within the Issues section of the Abseil and
TensorFlow GitHub repositories. Such posts were found by searching for specific
error messages resulting from failed compilation runs. A similar informed trial-and-
error approach can be applied when dealing with other libraries. As an example,
Figure A.1 shows the compilation script for TensorFlow Lite.

In cases where cross-compilation is not feasible, native compilation can be con-
ducted directly on the Raspberry Pi, albeit at the cost of significantly prolonged
completion times. In this case, the Linux build instructions for each library should
be followed. This may require separate compilation of additional sub-dependencies if
they are not already included in Elk Audio OS or fetched automatically during com-
pilation setup. This was the case for ONNX Runtime, where the compilation process
required a few tens of hours on the board. Consequently, a pre-compiled binary is
made available in this project’s repository.

When a dependency compiles to a dynamic library (i.e., *.so files), the binary
is necessary both during the linking phase (on the host computer) and the execution
phase (on the board) when the library is dynamically loaded. Consequently, the
compiled .so binary for any dependency must be transferred to the board and
placed in one of the system library paths. To determine the dynamic loading paths,

152

Chapter 7. Real-Time Embedded Deep Learning on Elk Audio OS

run echo $LD_LIBRARY_PATH on the device. As an alternative, if the binary is
located in a different directory, the folder containing the binary should be appended
to the LD_LIBRARY_PATH system variable after each reboot as follows:

export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/libpath/

This can be done manually or automatically. For automatic execution, the export
line can be added to either the ~/.bashrc or /etc/profile .

On the contrary, static libraries (i.e., *.a files) are automatically included in the
plugin binary and do not need to be copied to the board.

Plugins Compilation

Once the IE and other necessary libraries are compiled and appropriately added to
the compilation exporter (refer to Projucer configuration in the project repository,
Section 7.3.4), the plugin can undergo multiple compilations without the need to
re-compile the dependencies.

Assuming a proper Projucer setup, the steps for plugin compilations are as follows:

1. Saving the project from the Projucer app, to create the build structure;

2. Opening the terminal in the /build/Linux-aarch64 folder;

3. Resetting LD_LIBRARY_PATH ;

4. Sourcing the Elk-PI SDK;

5. Compiling with make , specifying
JUCE_HEADLESS_PLUGIN_CLIENT=1 ;

6. For VST3 plugins, renaming the
PluginName.vst3/Contents/arm64-Linux folder to
aarch64-Linux .

Additionally, prior to the make command, the user can specify additional optimiza-
tion flags such as the following:

export CXXFLAGS="-O3 -pipe -ffast-math -feliminate-unused-debug-types -
funroll-loops"

The following is a simplified compilation script for any plugin project.

153

7.4. Deployment Procedure

unset LD_LIBRARY_PATH

source /opt/elk/0.11.0/environment-setup-cortexa72-elk-Linux

export CXXFLAGS="-O3 -pipe -ffast-math -feliminate-unused-debug-types -
funroll-loops"

AR=aarch64-elk-Linux-ar make \
-j$(nproc) CONFIG=Release\
CFLAGS="-DJUCE_HEADLESS_PLUGIN_CLIENT=1 -Wno-psabi"\
TARGET_ARCH="-mcpu=cortex-a72 -mtune=cortex-a72"

7.4.3 Elk Audio OS on the Raspberry

Elk Audio OS v0.11.0 is available as open source for the Raspberry Pi 4 board8.
Previous versions also support the Raspberry Pi 3. Additionally, support for more
SBCs is available under a commercial license. To set up the OS, the OS image
should be downloaded from the GitHub repository and then flashed to a high-quality
SD card. The Raspberry Pi should be paired with an audio “hat” board that is
compatible with the OS, such as the HiFiBerry DAC+ ADC and HiFiBerry DAC+
ADC Pro boards.

Once an audio hat board is connected to the Raspberry Pi and the OS SD is in-
serted, the board should be powered on. The user can access the terminal either using
a monitor connected via HDMI or through a remote Secure SHell (SSH) connection.
Elk Audio OS operates without a GUI and necessitates control through the termi-
nal or via network protocols like Google Remote Procedure Calls (gRPC) or Open
Sound Control (OSC). For remote terminal access, the board can be connected via
an ethernet cable to either a network router or directly to a computer. Subsequently,
the terminal can be used to connect the board to a Wi-Fi network if desired. The
default hostname for Elk-Pi boards is elk-pi.local , enabling easy identification
of the board within a local network. To confirm the board’s connectivity, utilize the
ping command in the following manner and await a positive reply:

ping elk-pi.local

The arp -a command on a Linux terminal can prove useful in determining
the board’s IP address if the hostname cannot be resolved. Subsequently, the SSH

8https://github.com/elk-audio/elk-pi/releases

154

https://github.com/elk-audio/elk-pi/releases

Chapter 7. Real-Time Embedded Deep Learning on Elk Audio OS

protocol can be used to access the terminal remotely. The ssh command is available
on Linux, MacOS, and the latest Windows 10 and 11 terminals (PowerShell). In the
case of earlier versions of Windows or PowerShell, SSH clients like Putty9 can be used
to replace remote terminal and copy functions. To access the board via the terminal,
utilize the following command:

ssh mind@elk-pi.local

The default password is elk .
Once a connection is established, files such as the compiled plugin, configuration

files, and dynamic libraries can be transferred to the board using scp 10 from the
host computer:

scp -r /path/to/PluginName.vst3 mind@elk-pi.local:~/
scp libonnxruntime.so mind@elk-pi.local:~/

7.4.4 DAW configuration: Sushi

Once a VST plugin is copied to the board, it can be loaded into Elk Audio OS’s
DAW Sushi. Similar to other DAWs, Sushi allows the creation of multiple tracks,
each capable of having one or more audio and MIDI inputs and outputs. Every track
can feature a chain of plugins, loaded as dynamic libraries during runtime. However,
unlike most other DAWs, Sushi does not display or invoke the GUI code of the hosted
plugins, and the audio processing callback operates on a hard real-time Xenomai
thread to ensure low latency processing. For these reasons, executing the plugin
prepared in the previous steps requires the configuration and execution of Sushi.
Sushi can be configured in different ways, which include JSON static configurations,
the use of the SUSHI gRPC API11, the elkpi module12 and the Sushi GUI app13.

Here we will present the process to configure Sushi through a JSON text file.
Below is a configuration file that instructs Sushi to create a mono track with a single
audio input and output, and to load the VST3 plugin named “PluginName”:

9https://www.putty.org/
10https://Linux.die.net/man/1/scp
11https://github.com/elk-audio/sushi-grpc-api
12https://github.com/elk-audio/elkpy
13https://github.com/elk-audio/sushi-gui

155

https://www.putty.org/
https://Linux.die.net/man/1/scp
https://github.com/elk-audio/sushi-grpc-api
https://github.com/elk-audio/elkpy
https://github.com/elk-audio/sushi-gui

7.4. Deployment Procedure

{
"host_config":{ "samplerate":48000 },
"tracks":[

{
"name":"main",
"mode":"mono",
"inputs":[

{
"engine_channel":1,
"track_channel":0

}
],
"outputs":[

{
"engine_channel":1,
"track_channel":1

}
],
"plugins":[

{
"uid":"PluginName",
"path":"/path/to/vst/PluginName.vst3",
"name":"arbitrary_plugin_name",
"type":"vst3x"

}
]

}
],
"midi":{

"cc_mappings":[]
}

}

In particular, the uid field should match exactly the VST3 unique identifier, which
for JUCE corresponds to the project name (e.g., PluginName for PluginName.vst3).
Alternatively, for VST2 plugins, the plugin block in the JSON configuration should
contain only the following:

"path":"/path/to/vst/PluginName.so",
"name":"arbitrary_plugin_name",
"type":"vst2x"

156

Chapter 7. Real-Time Embedded Deep Learning on Elk Audio OS

Alternatively, the configuration for a stereo track should use the following mode ,
inputs , and outputs field values:

"mode":"stereo",
"inputs":[{

"engine_bus":0,
"track_bus":0

}],
"outputs":[{

"engine_bus":0,
"track_bus":0

}]

More configuration file examples are provided in the project repository (Section 7.3.4).
Once a configuration file is prepared, Sushi must be executed via the terminal by

providing the audio driver type and the configuration file path:

sushi -r -c "/path/to/config.json"

In this command, the -r option is used to specify Elk’s RASPA low-latency front-
end. Additional options can be appended, such as -multicore-processing=2

which enables Sushi to use multiple cores. Additionally, adding & at the end of
the command runs Sushi in the background, allowing continued use of the terminal.
To halt background execution later, employ pkill sushi . Should Sushi encounter
start-up issues, users should inspect the log file /tmp/sushi.log for insights. Sub-
sequently, the following section offers a concise overview of diagnostic tools.

7.4.5 Diagnostic tools

By default, Sushi records runtime events and errors in the file /tmp/sushi.log .
Adjusting the logging level is possible through the -l flag. The log can provide
insights into errors like mismatched plugin uids or incorrect configuration formats.
Furthermore, utilizing the -timing-statistics flag prompts Sushi to log the
proportion of CPU time utilized for processing. This is particularly significant for
real-time execution of deep learning models, where one or more inference operations
occur per audio block. It helps determine if the plugin remains within the designated
time budget for each call or exceeds it, causing unwanted glitches in the audio output.
The subsequent section will offer a concise overview of various execution modes, along
with considerations for managing real-time tradeoffs and handling large models.

157

7.4. Deployment Procedure

Elk Audio OS offers diagnostic tools for identifying real-time execution issues.
This is crucial as any portion of the code intended for real-time execution must
adhere to specific programming principles to ensure real-time safety [127]. These
principles encompass avoiding dynamic memory allocation within the audio thread,
refraining from using locking mechanisms for concurrent memory access, and not
awaiting lower-priority threads (e.g., querying system timers). In essence, these rules
can be distilled to the directive of not executing operations on the audio thread that
have unbounded or uncertain completion times. While the inference libraries included
have been tested and deemed real-time safe [109], it is essential for any user-added
code in a plugin to also adhere to these established rules.

Elk Audio OS operates on a dual-kernel system, utilizing Xenomai real-time
threads for audio processing. The assessment of real-time safety and troubleshoot-
ing of potential violations in user code becomes relatively straight-forward within
this framework. Specifically, in Elk Audio OS, non-safe operations detected during
the audio callback trigger a mode switch, i.e., the system will give control back to
the regular Linux kernel to handle unsafe operations. Subsequently, control is re-
turned to the Xenomai kernel. The entire operation is particularly time-consuming.
In Elk Audio OS versions up to 0.11.0, monitoring mode switches involves regularly
inspecting the MSW column in the /proc/xenomai/sched/stat file. The follow-
ing command, for instance, updates its output every three seconds, aiding in this
monitoring process:

watch -n 3 cat /proc/xenomai/sched/stat

Version 1.0.0, which was released while this procedure was being finalized, requires
using the evl ps -s command instead and looking at the ISW counter.

The number of mode switches must remain stable after plugin startup, with a
minor allowance of one or two mode switches at startup if not perceptible as artifacts.
However, in the case of repeated mode switches, their origin can be traced back to
the source code using the gdb debugger as follows:

1. Running the GNU Debugger gdb on the sushi executable for the current block
size (default 64):

gdb sushi_b64

2. Setting gdb to stop whenever the SIGXCPU signal is sent by the program:

158

Chapter 7. Real-Time Embedded Deep Learning on Elk Audio OS

catch signal SIGXCPU

3. Running Sushi with the debug-mode-sw flag:

r -r --debug-mode-sw -c config.json

Lastly, the Elk Audio forum14 serves as a valuable resource for obtaining support and
resolving similar issues.

14https://forum.elk.audio/

159

https://forum.elk.audio/

7.4. Deployment Procedure

Projucer App Plugin Binary

Plugin
Source Code

Makefile

Library
Binary

Library
Source Code

CMakeLists.txt

Makefile

 Data

TensorFlow
model

Lite
model

 Data

ONNX
model

 torch.onnx.export

1

2

Sushi DAW

Plugin Binary

JSON Config

Model

Elk Audio OSHost Computer

 scp

 scp

Model

Elk-PI SDK
Toolchain cmake

 make

 make

Train/Test
Script

Train/Test
Script

TFlite
Converter

Figure 7.1: Diagram depicting the deployment process of a deep learning model onto
an embedded device running Elk Audio OS. The process starts on a Host computer (top
left), where both plugin and dependency compilation take place. This involves utilizing
the Elk-PI toolchain to cross-compile the source code. During plugin compilation, the
necessary library binaries are linked, resulting in the generation of a binary file for
a VST plugin capable of execution on the target device (right). Once the plugin is
compiled, it needs to be transferred to the embedded computer running Elk Audio
OS. Elk’s DAW Sushi allows configuring the loading of the plugin, enabling real-time
audio processing. In the lower part of the diagram, the training, testing, and model
export phases essential for TensorFlow or frameworks exporting to the ONNX format,
such as PyTorch, are depicted. Dashed arrows labeled as 1 and 2 signify two distinct
options for model integration: in option 1, the deep learning model is integrated as
JUCE BinaryData into the plugin’s binary. Conversely, option 2 involves simply
copying the model to the target device. For the latter option, the plugin code must be
designed to load the model from a path relative to the target’s folder structure.

160

Chapter 7. Real-Time Embedded Deep Learning on Elk Audio OS

7.5 Considerations on real-time inference

Applications of machine learning and deep learning in the domain of audio can be
categorized into real-time and non-real-time (or offline) cases [191]. It is important to
clarify that this categorization is specific to audio tasks and should not be confused
with the terms “online” and “offline” used in deep learning research to refer to single-
sample and batch learning.

Audio Thread

Figure 7.2: Representation of repeated invocations of the audio processing routine on
the real-time thread. The black vertical lines demarcate the time-budget slots allocated
for processing each incoming audio buffer. Within this framework, the green boxes
signify computations conducted on the input audio buffers. These computations are
safely executed within the allotted time budget, ensuring completion before the con-
sumption of the current output buffer and the subsequent reading of the next input
buffer.

In particular, real-time audio analysis and processing algorithms must be designed
to continuously process audio data and produce a result (i.e., audio or other data)
before pre-defined problem-specific deadlines. An example is a real-time audio effect,
where the audio processing must occur at a faster pace than the output consumption
rate to prevent buffer underruns [126]. Since digital audio is typically buffered into
short audio blocks and processed at a fixed rate, this implies that an input buffer
consisting of X samples must be processed and transferred to the output within

X
samplerate seconds.

Figure 7.2 illustrates a scenario where computations are carried out safely within
the allocated time frame for each invocation of the audio processing routine. This
corresponds to the examples found in the project’s repository, where inference of a
small neural network that models stateless audio saturation is conducted for each
sample in the audio buffer. These examples are configured with a default of 64
samples per block and a samplerate of 48 kHz. They demonstrate efficient utilization,
utilizing approximately 15% (on the Raspberry Pi 4) of the available 1.33 ms for each
processing routine call (i.e., 64

48,000
).

161

7.5. Considerations on real-time inference

Nonetheless, the model’s execution time depends on the CPU in use (or acceler-
ation hardware like GPUs, if accessible) and the optimizations conducted by the IE
(refer to [109]). Consequently, a model that operates proficiently within the desig-
nated time limit on a laptop or desktop computer might face challenges on a resource-
limited device such as the Raspberry Pi. Figure 7.3 illustrates such a scenario, where
a specific set of computations is unable to finalize before the output buffer is con-
sumed and converted to analog, coinciding with the read operation for the new input
buffer. Consequently, this leads to noticeable audible artifacts in the output signal
due to the corrupted buffers.

Audio Thread

Figure 7.3: Representation of a set of computations (executed on the real-time audio
thread) that exceed the designated time budget, as indicated by the darker shaded
area. The darker area represents the overlap with the subsequent call to the audio
processing routine. When this occurs, it results in the production of audible artifacts
in the output signal.

Audio Thread

Twine Threads

Figure 7.4: Representation of an audio system where a computationally intensive se-
ries of operations must be conducted at the audio callback rate. However, these opera-
tions can be fragmented into distinct and independent tasks. In this scenario, various
independent sets of computations can be executed in parallel on separate threads. Elk
Audio OS facilitates this through the TWINE library, which enables precise control
of the parallel execution of threads and the gathering of results of multiple working
threads from the audio callback.

162

Chapter 7. Real-Time Embedded Deep Learning on Elk Audio OS

In the instance of a deep learning model that must execute for each audio
routine call (e.g., for effect modeling), striking a balance between latency and result
quality becomes imperative. Potential solutions, often encountered by deep learning
developers, include:

1. Increasing the time budget. This can be accomplished by increasing the
audio block size or diminishing the sample rate. Such decisions unavoidably
increase the latency between input and output, yet concurrently expand the
processing time budget. A larger audio block size signifies a greater number of
samples to process for each call, but it will also diminish function call overhead.
It is worth noticing that processors can operate more efficiently by executing a
larger batch of operations at once.

2. Optimizing on the model. A primary option involves training smaller mod-
els for the same task, which can mean having to find a balance between model
size and “result quality” (e.g., error or accuracy). Techniques such as transfer
learning and knowledge distillation can assist in maintaining satisfactory result
quality while utilizing smaller models. Additionally, there are options that do
not alter the model’s fundamental design and structure, including “quantiza-
tion” and “pruning”. Quantization involves decreasing the weight resolution of
the network (e.g., from 32-bit float values to 8-bit integers). On the other hand,
pruning gradually sets the weights of the network to zero, reducing the number
of multiplications to execute during, if the engine of choice supports sparse ex-
ecution. It is important to note that these alternatives may potentially lead to
reduced accuracy or increased test error in the results.

3. Parallel execution. Finally, in rare cases where the set of computations that
exceed the time budget can be subdivided into more manageable and indepen-
dent subsets, these can be assigned to multiple real-time threads. The quad-core
(4 cores) Cortex-A72 processor of the Raspberry Pi4 allows the concurrent ex-
ecution of multiple threads. However, this is only possible if the tasks to run in
parallel are completely independent of the results of each other. This situation
is depicted in Figure 7.4.

However, not all real-time audio analysis or classification systems need to run
in their entirety for every call of the audio processing routine. This is particularly

14https://github.com/elk-audio/twine

163

https://github.com/elk-audio/twine

7.5. Considerations on real-time inference

relevant in event-based systems, where deep signal analysis is required only when a
specific event occurs. An example is a note-based real-time guitar technique classi-
fier [80], where the prediction model is executed only upon onset detection. In cases
where events are expected to occur less frequently than processing routine calls (e.g.,
less frequently than once every 1.33 ms for 64 sample blocks and a 48 kHz sample
rate), only the detection stage (e.g., rapid onset detection using DSP methods) needs
to be executed for each block. In this scenario, the in-depth analysis, potentially
involving deep inference, is triggered by detection and can take longer to complete,
depending on the minimum inter-event time allowed. However, it is essential to of-
fload the classification to a high-priority thread outside of the real-time kernel to
allow inference to take longer than a block without impacting the audio output. If
necessary, the results can be moved to the real-time thread after inference has been
completed (refer to Figure 7.5). In this case, it is crucial to move input data and
results without using locking data structures or unsafe operations. An example il-
lustrating this approach are the expressive guitar technique classifies presented in
Chapter 3 and Chapter 6.

Audio Thread

Accessory

Thread

Figure 7.5: Representation of a digital audio system with a more relaxed real-time
constraint compared to those in Fig. 7.2 (i.e., not audio-rate deadlines), where some
computationally intensive operations need to be conducted less frequently than calls
to the audio callback and can be executed on a separate thread. This situation can
arise in event-based deep learning inference [109], where signal analysis occurs only
when events are detected. In these cases, event detection can be a less computation-
ally demanding operation performed for each audio block, while the more substantial
analysis is allowed to exceed the time budget for a single audio callback call.

164

Chapter 7. Real-Time Embedded Deep Learning on Elk Audio OS

7.6 Other Application and work in progress

Other applications of this guide, and more broadly of the general results obtained
in this thesis work, consist of a wide range of tasks that require the execution of
deep learning models for audio on embedded devices. For instance, one of the code
examples in the project’s repository consists of a real-time audio effect that uses a
very simple neural network to emulate an audio saturation function. This code sample
is provided as a mere example, as it is far from a high-quality neural audio effect,
but there are many examples of neural networks used for analog effect modeling that
could be executed in a similar way.

Additionally, the procedure described in this guide and previous chapters sup-
ported the work done during the 6-months research period spent at the Centre for
Digital Music (C4DM) at the Queen Mary University of London. This culminated in
the development of an offline embedded classifier for intended emotion from guitar
and piano improvisation excerpts. The emotion recognition pipeline is composed of
three stages: a recorder, a set of feature extractors, and an instrument-specific deep
classifier. The recognition system first records a short emotional piece from the audio
input (monaural). The recording is then downsampled to 16 kHz and a wide range
of timbral features are extracted using the library Essentia [148]. The emotion clas-
sifiers used were based on MusiCNN, fitted with additional layers, and trained with
transfer-learning [192]. TensorFlow Lite 2.11 was used to execute the emotion classi-
fier in the embedded platform. The recognition system was paired with a mechanism
to query a musical database for brief pieces with similar emotions to those that were
recognized.

The embedded emotion recognition system is now complete, and it has been
undergoing a phase of user studies, to assess the perceived recognition quality. The
system has been now tested with 4 musicians: a picture of the user-study setup
for a piano player is in Figure 7.6. Figure 7.7 shows an example of the emotional
recognition results when analyzed on a laptop after the studies.

After the completion of this offline classifier, the development of a real-time version
has started. In this system, emotions will be retrieved from the sound signal every
6 to 9 seconds. Emotional information retrieved in this way will be sent with OSC
messages via the network for varied applications for live performance.

165

7.6. Other Application and work in progress

Figure 7.6: User-study for the embedded emotion recognition system, for a piano
player.

Figure 7.7: Example of emotion classification results for 3-second audio chunks logged
by the embedded recognition system.

166

Chapter 7. Real-Time Embedded Deep Learning on Elk Audio OS

7.7 Summary

This chapter outlined a comprehensive procedure for deploying real-time deep-learning
inference on an embedded computer running Elk Audio OS. The procedure covers
the steps from creating a compatible code project to executing and diagnosing a VST
plugin on a Raspberry Pi. Additionally, we discussed various approaches for achiev-
ing real-time execution of deep learning inference on embedded devices and presented
alternatives and strategies applicable to larger neural network models.

To accompany this chapter, we have provided an online repository containing
a detailed and up-to-date guide, code templates, functional examples, and library
binaries for the two supported IEs. The code repository serves the purpose of helping
the reader to deploy their models but also to provide updates in case the process
is subject to change with future versions of Elk Audio OS and the IEs. This work
enables developers and machine learning engineers to start using audio deep learning
models on compact embedded computers.

In the short period between its creation and the writing of this thesis, this guide
has already been used by a few students and researchers for theses, instrument pro-
totypes, and forthcoming scientific publications.

A limitation of this study is that library cross-compilation can follow a very dif-
ferent process for other libraries, while this study focused mostly on providing a pro-
cedure for the TensorFlow Lite and ONNX Runtime libraries. This excludes some of
the processing libraries that a developer could need. Lastly, some details of the de-
ployment procedure may become outdated due to updates in Elk Audio OS and IEs.
As a result, we have provided a general overview in this chapter, directing readers to
a more detailed and up-to-date guide available in the project’s repository.

Nevertheless, we believe the outlined procedure represents a coherent process that
remains fundamentally similar despite variations in the details. The accompanying
code repository will stand as a valuable resource as systems and libraries continue to
evolve.

167

7.7. Summary

168

Chapter 8

Conclusions

In the initial stages of our research, we found a lack of studies detailing the real-
time execution of deep-learning inference for audio on embedded devices. Conversely,
deep-learning methods had gained significant traction in various MIR tasks, including
expressive guitar technique recognition. Moreover, we observed that online/real-
time execution was rarely considered as a metric in studies that investigated guitar
technique recognition. These gaps proved challenging in realizing our vision for a
smart guitar, but it became clear that these limitations had broader implications,
affecting the development of smart musical instruments and deep-learning-powered
audio devices as a whole.

In this thesis, several methods to support the development of a smart guitar have
been proposed. In particular, we focused on the task of expressive guitar technique
recognition targeting real-time execution on an embedded computer. In addition, the
challenges of embedded real-time Music Information Retrieval were investigated and
discussed along with potential solutions and tradeoffs. Furthermore, we proposed a
real-time-aware optimization method for parametric onset detectors, which takes into
account both detection accuracy and latency. Moreover, we compared several tools
of embedded real-time deep learning inferences, helping shed light on the different
real-time performance granted by different software tools when performing inference
of a neural network. Finally, we proposed a procedure for the deployment of real-time
deep learning for audio on embedded computers with Elk Audio OS.

We believe the implications of this doctoral research and its results extend past

169

8.1. Challenges of Embedded Real-time Music Information Retrieval

expressive guitar technique recognition and smart guitars, as the proposed approaches
can be applied to many other instruments, and the technical tools investigated and
created can help the development of deep-learning-equipped audio devices in general.

The majority of the work presented in this thesis has been presented in interna-
tional peer-reviewed conferences, as shown in Section 1.2.1 and presented with demos
(Section 1.2.3). Additionally, the software output of the studies presented in this the-
sis, along with the dataset of acoustic guitar playing techniques created, have been
made available as open-source (Section 1.2.4). In this chapter, the main contributions
of the thesis are summarized and directions for future work are presented.

8.1 Challenges of Embedded Real-time Music

Information Retrieval

Chapter 3 presented the challenges of embedded real-time Music Information Re-
trieval, which include access to the sole past and current input data, tuning the
tradeoff between system accuracy and latency, real-time audio deadlines, real-time-
safe programming rules, and the limitations of embedded hardware and low-level
software. Furthermore, we presented a demonstrative implementation of a real-time
embedded expressive guitar technique classifier to illustrate the proposed solutions.

The classifier achieved an accuracy of 99.2% in distinguishing pitched and per-
cussive techniques, along with an average accuracy of 99.1% in distinguishing four
distinct percussive techniques, alongside a fifth category dedicated to pitched sounds.
Conversely, the task of classifying the full set of twelve different techniques proved to
be more difficult, and our proposed approach did not obtain satisfactory results.

Nevertheless, the classification pipeline with the models for the first two tasks was
successfully integrated into a Raspberry Pi 4 with the real-time Elk Audio OS, and
the classification outcomes were generated with an average latency of roughly 30.7
ms from the note onset. The classification delay was found to be hardly perceptible.

The experiment showcased solutions such as dividing the classification task into a
stepwise pipeline with different operating rates, precise tuning of system latency, uti-
lizing a real-time embedded operating system for optimal performance on devices with
limited resources, and implementing coding practices that ensure real-time safety.

170

Chapter 8. Conclusions

Limitations and Future Work

The presented classifier, however, has its limitations. First of all, it primarily focused
on an attack-based real-time classification approach, and we constructed the classifier
as a minimum viable example to showcase the discussed solutions, allowing room
for more refined technical choices and tools. Additionally, we employed a simple
but limited approach using a Feed-Forward Neural Network to classify 1D feature
vectors extracted from the feature window. In summary, future studies could explore
two potential directions: 1. Redesigning the classification framework and pipeline
to include non-attack-based techniques. 2. Refining the classification pipeline for
attack-based techniques, given the considerable room for improvement in the simple
approach used here. We opted to pursue the second alternative, as we observed
that many non-attack-based techniques can be detected through pitch and envelope
tracking (e.g., pitch bending, vibrato).

Moreover, refining the current pipeline presented opportunities for addressing in-
teresting challenges. This includes defining real-time-aware optimizations for onset
detectors, fine-tuning feature selection, enhancing the neural classifier, exploring the
possibilities and performance of different inference libraries for neural networks on
embedded computers, and ultimately facilitating the deployment of deep audio mod-
els on embedded devices. These possibilities were further investigated in the following
chapters.

The work described Chapter 3 is a contribution presented at the 25th International
Conference on Digital Audio Effects [109].

8.2 Bio-inspired Optimization of Parametric Onset

Detectors

In Chapter 4 we introduced a methodology for optimizing the performance of para-
metric onset detectors. Our approach focused on enhancing detection accuracy and
minimizing the time delay, i.e., latency, between the actual onset and its notifica-
tion. The proposed technique was effectively applied to the onset detectors within
the Aubio library. The proposed technique involved an Evolutionary Computation
algorithm with which we automated the optimization of input parameters for each
detector, utilizing the Pareto front to identify the best solutions. Compared to the
commonly used manual optimization, the proposed method decreased the human

171

8.2. Comparison of Deep Learning Inference Engines

effort needed and yielded comparable results. The efficiency of our approach, com-
bined with its short execution time, makes it feasible to apply the method to larger
datasets.

When comparing the F1-score values obtained through the evolutionary compu-
tation algorithm to those achieved via manual optimization, we observed an average
difference of 1.4 × 10−3 F1-score points, with a standard deviation of 1.2 × 10−2.
Additionally, the automated algorithm required 13 hours and 34 minutes to compute
the best results, while the manual procedure demanded over two working days of
human effort.

Limitations and Future Work

A limitation of the experiments present in our work was the use of only a subset of an
audio dataset. The suggested method could derive greater benefits from utilizing the
entire dataset of interest. Moreover, the number of parallel optimization instances
could be increased, especially with a more powerful computer. A higher degree of
parallelism could also be exploited by allowing the evolutionary algorithm to compute
the fitness of more than one individual simultaneously, on multiple processing threads.

Furthermore, we did not compare the proposed method with grid-search algo-
rithms as they require scanning a large number of combinations of parameters, with-
out the possibility of automatically focusing the search on potential optima of the
search space. Nevertheless, a comparison between the proposed approach and grid
search would help further define the strengths and drawbacks of the proposed method.
Finally, the optimization performance may be further improved by using fully multi-
objective EC algorithms for even less human supervision over the optimizer.

The work described Chapter 4 is a contribution presented at the 24th International
Conference on Digital Audio Effects [135].

8.3 Comparison of Deep Learning Inference

Engines for Embedded Real-time Audio

Classification

In Chapter 5 we conducted a comparison of four distinct inference engines focusing
on real-time audio classification on the CPU of an embedded computer. Our goal
was to provide insights into optimized inference engines for efficient deep learning

172

Chapter 8. Conclusions

inference, particularly in the context of real-time audio classification. For our study,
we selected models designed for classifying expressive guitar techniques in real-time.

Our findings revealed that many well-known deep learning inference engines are
well-suited for real-time audio classification, eliminating the need to resort to spe-
cialized and more limited solutions. However, specialized solutions can serve as
lightweight and minimal alternatives, especially in scenarios where flexibility is not a
primary concern.

While the focus of this comparison was on embedded computers and audio clas-
sification, most results are likely to translate or scale to audio plugins for desktop
computers and audio processing.

Limitations and Future Work

The limitations of this study lie in the choice of restricting the comparison to feed-
forward neural networks and only four inference engines. Future work should explore
more inference engines and investigate performance differences with a wider range
of deep learning models, such as recurrent and convolutional neural networks. Addi-
tionally, extending this comparison to slower CPUs and testing with quantized neural
network models could offer valuable insights.

Chapter 5 discussed a contribution presented at the 25th International Conference
on Digital Audio Effects [109].

8.4 Embedded Real-Time Expressive Guitar

Technique Recognition

In Chapter 6 we introduced a flexible-latency embedded real-time expressive guitar
technique classifier. Furthermore, we explored the influence of task requirements and
data characteristics on recognition performance.

Our findings indicate that easing the latency constraints, particularly in the range
of 15 to 45 milliseconds, can enhance recognition accuracy for both pitched and
percussive techniques. Interestingly, the performance for percussive techniques is
mostly unaffected and may even experience slight degradation with larger feature
windows.

Additionally, we observed a trend where models tend to overfit specific guitar and
player characteristics, limiting their ability to learn broader properties of expressive

173

8.4. Embedded Real-Time Expressive Guitar Technique Recognition

techniques and hampering generalization performance across different instruments
and players. This effect was observed even within the very first 1̃4 ms of musical
notes in the signal.

We effectively tackled this challenge by implementing grouped k-fold cross valida-
tion, ensuring the separation of guitar and player pairs during training and testing.
We showed how this can yield accurate metrics. In contrast, the accuracy metrics
obtained through simple k-fold cross-validation proved to be misleading, as they in-
creased with reduced real generalization performance. Furthermore, our emphasis on
a single instrument revealed that while it could lead to improved performance, the
distinctive touch or style of different guitarists is likely to influence recognition per-
formance. The classifier was successfully implemented and deployed to a single-board
computer.

Limitations and Future Work

Some of the limitations of the study include the relatively small size of the additional
dataset used for the guitarist’s touch experiment and the focus solely on recogniz-
ing techniques in monophonic signals. To address this, future work should handle
polyphony through the use of a hexaphonic pickup. Additionally, future endeavors
should extend the classification task to more techniques, such as hammer-on, pull-off,
and bending, which could be integrated thanks to a real-time pitch tracker. Moreover,
future studies should focus on a more comprehensive investigation into the impact
of the "Guitarist’s Touch" on recognition, informing the integration of new data into
the expressive guitar technique dataset.

Finally, this study presented a review of the performance of an expressive guitar
technique classifier for different latency constraints and under different characteristics,
while the perceptual effect of recognition latency on musicians was outside of the
scope of the study. In fact, the perception of latency would depend on whether the
playing technique information is repurposed as audio, video, or other media. A future
study will focus on the development of an application that repurposes the technique
information for sound synthesis, and different degrees of latency will be tested with
musicians in order to understand their reactions.

Chapter 6 discussed a contribution submitted to IEEE/ACM Transactions on
Audio, Speech, and Language Processing.

174

Chapter 8. Conclusions

8.5 Real-Time Embedded Deep Learning on Elk

Audio OS

In Chapter 7 we presented a detailed procedure for deploying real-time deep learning
inference on an embedded computer running Elk Audio OS. The outlined process en-
compasses the entire workflow, from creating a compatible code project to executing
and diagnosing a VST plugin on a Raspberry Pi.

Furthermore, the chapter discussed different approaches for achieving real-time
execution of deep learning inference on embedded devices. Additionally, we discussed
alternatives and strategies applicable to larger neural network models.

To complement the discussion in Chapter 7, we provided an online repository
with a comprehensive and updated guide, code templates, functional examples, and
library binaries for the two supported inference engines. The repository serves not
only as a practical resource for readers to deploy their models but also as a hub
for updates, ensuring adaptability to potential changes in the deployment process
with future versions of Elk Audio OS and the inference engines. This work enables
developers and machine learning engineers to start deploying audio deep learning
models on compact embedded computers.

Notably, in the brief period since its inception and the writing of this thesis, several
students and researchers have already used this guide for their theses, instrument
prototypes, and upcoming scientific publications.

Limitations and Future Work

A limitation of this study is that the process of library cross-compilation can vary
significantly across different libraries, while this study predominantly focused on pro-
viding a procedure for the TensorFlow Lite and ONNX Runtime libraries. This
excludes certain processing libraries that developers might require for Music Infor-
mation Retrieval or applications based on audio spectrograms.

Additionally, some details of the deployment procedure may become outdated due
to updates in Elk Audio OS and inference engines. As a solution, we have offered a
general overview in this chapter, guiding readers to a more detailed and continuously
updated guide available in the project’s repository. Nevertheless, we believe the
outlined procedure represents a coherent process that remains fundamentally similar
despite variations in the details. The accompanying code repository will serve as a

175

8.6. Concluding Remarks

valuable resource as systems and libraries continue to evolve.
Chapter 7 described a contribution presented at the 4th International Symposium

on the Internet of Sounds [180].

8.6 Concluding Remarks

I am grateful to have had the possibility to contribute to scientific knowledge in the
research fields I delved into during my PhD, which were relatively unexplored at its
beginning. I am also grateful to have had the possibility to put my best efforts and
time into research work that produced results that are not purely theoretical, and
that could help the creation of tools and musical instruments and, in turn, be used
to create music.

At the same time, I am aware of the entity of the research efforts that still need
to be put into smart musical instruments to achieve precise and quick tracking of
musical properties on resource-constrained devices, as well as the refinement and
improvement necessary for the tools that enable deep learning inference for audio on
embedded devices. Finally, I hope that the contribution presented with this thesis can
inspire and help researchers and developers to improve the technology that supports
smart musical instruments and the execution of deep-learning inference for real-time
audio on embedded devices.

176

Bibliography

[1] Joseph A Paradiso, “Electronic music: new ways to play,” IEEE Spectrum,
vol. 34, no. 12, pp. 18–30, 1997.

[2] Noboru Suenaga, “GUITAR SYNTHESIZER,” USA Patent US4 357 852A, May
15, 1980, assignee: Roland Corporation.

[3] David Friend, “An integrated guitar synthesizer for live performance,” in Audio
Engineering Society Convention 58. Audio Engineering Society, 1977.

[4] Matrixsynth, “360 System Spectre Oberheim SEM Synthesizer,” https://www.
matrixsynth.com/2023/04/360-system-spectre-oberheim-sem.html, Aug. 2023.

[5] Tonehome.de, “Jen GS-3000 Syntar,” https://www.tonehome.de/jen/
gs-3000-syntar/, 2023.

[6] Fabián Esqueda, Otso Lähdeoja, and Vesa Välimäki, “Algorithms for guitar-
driven synthesis: Application to an augmented guitar,” in Proceedings of the
15th Sound and Music Computing Conference: Sonic Crossings, SMC 2018,
2018, pp. 444–451.

[7] Steve Hackett, “Roland GR-500,” in Sound International Maga-
zine, Dec. 1978. [Online]. Available: https://www.joness.com/gr300/pdf/
steve-hackett-roland-gr-500.pdf

[8] Tom Mullen, “Interview with Robert Fripp,” Guitar Player Magazine, Jun.
1986. [Online]. Available: https://www.joness.com/gr300/fripp.htm

177

https://www.matrixsynth.com/2023/04/360-system-spectre-oberheim-sem.html
https://www.matrixsynth.com/2023/04/360-system-spectre-oberheim-sem.html
https://www.tonehome.de/jen/gs-3000-syntar/
https://www.tonehome.de/jen/gs-3000-syntar/
https://www.joness.com/gr300/pdf/steve-hackett-roland-gr-500.pdf
https://www.joness.com/gr300/pdf/steve-hackett-roland-gr-500.pdf
https://www.joness.com/gr300/fripp.htm

Bibliography

[9] William A. Aitken, Anthony J. Sedivy, and Michael S. Dixon, “Electronic Mu-
sical Instrument,” USA Patent USD289 900S, Aug 7, 1984.

[10] Jacob Harrison, Robert H Jack, Fabio Morreale, and Andrew P. McPherson,
“When is a Guitar not a Guitar? Cultural Form, Input Modality and
Expertise,” in Proceedings of the International Conference on New Interfaces
for Musical Expression. Zenodo, Jul. 2018, pp. 299–304. [Online]. Available:
https://doi.org/10.5281/zenodo.1302589

[11] “Sonuus website - G2M midi converter,” https://www.sonuus.com/products_
g2m.html, accessed: 2023-12-29.

[12] “Fishman website - TriplePlay MIDI Guitar Controller,” https://www.fishman.
com/tripleplay/, accessed: 2023-12-29.

[13] “Jam Origin - MIDI Guitar - website,” https://www.jamorigin.com/, accessed:
2023-12-29.

[14] Robert H Jack, Tony Stockman, and Andrew McPherson, “Rich gesture, re-
duced control: the influence of constrained mappings on performance tech-
nique,” in Proceedings of the 4th International Conference on Movement Com-
puting, 2017, pp. 1–8.

[15] Duncan MacConnell, Shawn Trail, George Tzanetakis, Peter Driessen, Wy-
att Page, and N Wellington, “Reconfigurable autonomous novel guitar effects
(range),” in Proceedings of the international conference on sound and music
computing, 2013.

[16] Markus Schedl, Emilia Gómez, and Julián Urbano, “Music information retrieval:
Recent developments and applications,” Foundations and Trends® in Informa-
tion Retrieval, vol. 8, no. 2-3, pp. 127–261, 2014.

[17] Adam R Tindale, Ajay Kapur, George Tzanetakis, and Ichiro Fujinaga, “Re-
trieval of percussion gestures using timbre classification techniques.” in ISMIR,
2004.

178

https://doi.org/10.5281/zenodo.1302589
https://www.sonuus.com/products_g2m.html
https://www.sonuus.com/products_g2m.html
https://www.fishman.com/tripleplay/
https://www.fishman.com/tripleplay/
https://www.jamorigin.com/

Bibliography

[18] Esteban Maestre, “Modeling instrumental gestures: an analysis/synthesis
framework for violin bowing,” Ph.D. dissertation, Department of Information
and Communication Technologies, Universitat Pompeu Fabra, 2009.

[19] Caroline Traube, Philippe Depalle, and Marcelo Wanderley, “Indirect acqui-
sition of instrumental gesture based on signal, physical and perceptual infor-
mation,” in Proceedings of the 2003 conference on New interfaces for musical
expression, 2003, pp. 42–47.

[20] Yudong Zhao, Changhong Wang, György Fazekas, Emmanouil Benetos, and
Mark Sandler, “Violinist identification based on vibrato features,” in 2021 29th
European Signal Processing Conference (EUSIPCO). IEEE, 2021, pp. 381–385.

[21] Brian CJ Moore, An introduction to the psychology of hearing. Brill, 2012.

[22] L. Turchet, C. Fischione, G. Essl, D. Keller, and M. Barthet, “Internet of
Musical Things: Vision and Challenges,” IEEE Access, vol. 6, pp. 61 994–62 017,
2018. [Online]. Available: https://doi.org/10.1109/ACCESS.2018.2872625

[23] Andrew McPherson and Victor Zappi, “An environment for submillisecond-
latency audio and sensor processing on BeagleBone Black,” in Proceedings of
the AES 138th Convention, Warsaw, Poland, 2015.

[24] Luca Turchet and Carlo Fischione, “Elk Audio OS: an open source operating
system for the Internet of Musical Things,” ACM Transactions on the Internet
of Things, vol. 2, no. 2, pp. 1–18, 2021.

[25] Luca Turchet, “Smart Musical Instruments: Vision, Design Principles, and
Future Directions,” IEEE Access, vol. 7, pp. 8944–8963, 2019.

[26] Teresa Pelinski, Victor Shepardson, Steve Symons, Franco Santiago
Caspe, Adan L Benito Temprano, Jack Armitage, Chris Kiefer, Rebecca
Fiebrink, Thor Magnusson, and Andrew McPherson, “Embedded AI
for NIME: Challenges and Opportunities,” International Conference on
New Interfaces for Musical Expression, Jun. 2022. [Online]. Available:
https://nime.pubpub.org/pub/rwr2c3zs

179

https://doi.org/10.1109/ACCESS.2018.2872625
https://nime.pubpub.org/pub/rwr2c3zs

Bibliography

[27] William Brent, “A Timbre Analysis And Classification Toolkit For Pure Data,”
in Proceedings of the 2010 International Computer Music Conference, ICMC
2010, New York, USA, 2010. Michigan Publishing, 2010.

[28] Domenico Stefani and Luca Turchet, “aGPTset (acoustic Guitar Playing
Technique dataset),” Nov. 2023. [Online]. Available: https://doi.org/10.5281/
zenodo.10159492

[29] Luca Turchet, Michele Benincaso, and Carlo Fischione, “Examples of use cases
with smart instruments,” in Proceedings of the 12th international audio mostly
conference on augmented and participatory sound and music experiences, 2017,
pp. 1–5.

[30] Luca Turchet, Andrew McPherson, and Carlo Fischione, “Smart instru-
ments: Towards an ecosystem of interoperable devices connecting performers
and audiences,” in Proceedings of Sound and Music Computing Conference.
http://www. smcnetwork. org/, 2016, pp. 498–505.

[31] Eduardo Reck Miranda and Marcelo M Wanderley, New digital musical instru-
ments: control and interaction beyond the keyboard. AR Editions, Inc., 2006,
vol. 21.

[32] Alex Mulder, “Towards a choice of gestural constraints for instrumental per-
formers,” Trends in gestural control of music, vol. 315, p. 335, 2000.

[33] Caroline Hummels, Gerda Smets, and Kees Overbeeke, “An intuitive two-
handed gestural interface for computer supported product design,” in I.
Wachsmuth and M. Frohlich (Eds.), Gesture and Sign Language in Human-
computer Interaction: Proceedings of the II Gesture Workshop. Springer-
Verlag, 1997, pp. 197–208.

[34] Pierre Feyereisen and Jacques-Dominique De Lannoy, Gestures and speech:
Psychological investigations. Cambridge University Press, 1991.

[35] Rolf Inge Godøy and Marc Leman, Musical gestures: Sound, movement, and
meaning. Routledge, 2010.

180

https://doi.org/10.5281/zenodo.10159492
https://doi.org/10.5281/zenodo.10159492

Bibliography

[36] Ralf Steinmetz, “Human perception of jitter and media synchronization,” IEEE
Journal on selected Areas in Communications, vol. 14, no. 1, pp. 61–72, 1996.

[37] Tod Machover and Joe Chung, “Hyperinstruments: Musically Intelligent and
Interactive Performance and Creativity Systems,” in Proceedings of the 1989
International Computer Music Conference (ICMC’89), 1989, pp. 186–190.

[38] Tod Machover, Hyperinstruments: A Progress Report, 1987-1991. MIT Media
Laboratory, 1992.

[39] Dan Overholt, Edgar Berdahl, and Robert Hamilton, “Advancements in actu-
ated musical instruments,” Organised Sound, vol. 16, no. 2, pp. 154–165, 2011.

[40] Luca Turchet, “Some Reflections on the Relation between Augmented
and Smart Musical Instruments,” in Proceedings of the Audio Mostly
2018 on Sound in Immersion and Emotion, ser. AM ’18. New York,
NY, USA: Association for Computing Machinery, 2018. [Online]. Available:
https://doi.org/10.1145/3243274.3243281

[41] Andrew McPherson, “The Magnetic Resonator Piano: Electronic Aug-
mentation of an Acoustic Grand Piano,” Journal of New Music
Research, vol. 39, no. 3, pp. 189–202, 2010. [Online]. Available:
https://doi.org/10.1080/09298211003695587

[42] ——, “Buttons, Handles, and Keys: Advances in Continuous-Control
Keyboard Instruments,” Computer Music Journal, vol. 39, no. 2, pp. 28–46,
06 2015. [Online]. Available: https://doi.org/10.1162/COMJ_a_00297

[43] Frédéric Bevilacqua, Nicolas H Rasamimanana, Emmanuel Fléty, Serge Lemou-
ton, and Florence Baschet, “The augmented violin project: research, composi-
tion and performance report,” in 6th International Conference on New Inter-
faces for Musical Expression (NIME 06), 2006, pp. 402–406.

[44] Daniel Overholt, “The overtone fiddle: an actuated acoustic instrument,” in
New Interfaces for Musical Expression. University of Oslo, 2011, pp. 4–7.

181

https://doi.org/10.1145/3243274.3243281
https://doi.org/10.1080/09298211003695587
https://doi.org/10.1162/COMJ_a_00297

Bibliography

[45] Adrian Freed, David Wessel, Michael Zbyszynski, and Frances Marie Uitti,
“Augmenting the cello,” in Proceedings of the 2006 conference on new interfaces
for musical expression, 2006, pp. 409–413.

[46] Joseph Thibodeau and Marcelo M. Wanderley, “Trumpet Augmentation and
Technological Symbiosis,” Computer Music Journal, vol. 37, no. 3, pp. 12–25,
09 2013. [Online]. Available: https://doi.org/10.1162/COMJ_a_00185

[47] Cléo Palacio-Quintin, “The hyper-flute,” in Proceedings of the International
Conference on New Interfaces for Musical Expression. Zenodo, 2003, pp.
206–207. [Online]. Available: https://doi.org/10.5281/zenodo.1176549

[48] Luca Turchet, “The hyper-hurdy-gurdy,” in Proceedings of the Sound and Music
Computing Conference, 2016, pp. 491–497.

[49] ——, “The hyper-zampogna.” in Proceedings of Sound and Music Computing
Conference, 2016, pp. 485–490.

[50] Duncan Menzies and Andrew McPherson, “An Electronic Bagpipe Chanter for
Automatic Recognition of Highland Piping Ornamentation,” in NIME, 2012.

[51] Luca Turchet, “The Hyper-Mandolin,” in Proceedings of the 12th International
Audio Mostly Conference on Augmented and Participatory Sound and Music
Experiences, ser. AM ’17. New York, NY, USA: Association for Computing
Machinery, 2017. [Online]. Available: https://doi.org/10.1145/3123514.3123539

[52] Teemu Maki-Patola, Perttu Hämäläinen, and Aki Kanerva, “The augmented
djembe drum: sculpting rhythms,” in Proceedings of the 2006 conference on
New interfaces for musical expression, 2006, pp. 364–369.

[53] Miller Puckette, “Patch for guitar,” in Pure Data Convention, Montreal, Feb.
2007, pp. 1–5.

[54] Nicolas Bouillot and M Wozniewski, “A Mobile Wireless Augmented Guitar,”
in Proceedings of the International Conference on New Interfaces for Musical
Expression, no. October 2014, 2008, pp. 189–192.

182

https://doi.org/10.1162/COMJ_a_00185
https://doi.org/10.5281/zenodo.1176549
https://doi.org/10.1145/3123514.3123539

Bibliography

[55] Loïc Reboursière, Christian Frisson, Otso Lähdeoja, John A Mills, Cécile
Picard-Limpens, and Todor Todoroff, “Multimodal Guitar: A Toolbox For
Augmented Guitar Performances.” in Proceedings of the 2010 Conference on
New Interfaces for Musical Expression (NIME), 2010, pp. 415–418.

[56] Iñigo Angulo, Sergio Giraldo, and Rafael Ramirez, “Hexaphonic guitar tran-
scription and visualization,” in Proceedings of the International Conference on
Technologies for Music Notation and Representation (TENOR), 2016, pp. 187
– 192.

[57] Andrea Martelloni, Andrew McPherson, and Mathieu Barthet, “Guitar aug-
mentation for Percussive Fingerstyle: Combining self-reflexive practice and
user-centred design,” in Proceedings of the International Conference on New
Interfaces for Musical Expression (NIME), Shanghai, China, 2021.

[58] ——, “Real-time percussive technique recognition and embedding learning for
the acoustic guitar,” in Proceedings of the 24th International Society for Music
Information Retrieval Conference. ISMIR, Nov. 2023.

[59] Otso Lähdeoja, “An augmented guitar with active acoustics,” in Proceedings of
the 12th International Conference in Sound and Music Computing (SMC-15),
2015, pp. 85–89.

[60] Eduardo AL Meneses and José Fornari, “Guitarami: um instrumento musical
aumentado que transpoe restriçoes intrınsecas do violao,” in Proceedings of the
15th Brazilian Symposium on Computer Music, Campinas/SP, 2015.

[61] Eduardo AL Meneses and Marcelo M Wanderley, “New developments on the
augmentation of a classical guitar: Addition of embedded sound synthesis and
osc communication over network,” in Proc. 16th Brazilian Symposium on Com-
puter Music (SBCM), Sao Paulo, Brazil, 2017.

[62] Eduardo AL Meneses, Sérgio Freire, and Marcelo M Wanderley, “GuitarAMI
and GuiaRT: two independent yet complementary augmented nylon guitar
projects,” in Proceedings of the International Conference on New Interfaces
for Musical Expression, 2018, pp. 222–227.

183

Bibliography

[63] Sérgio Freire, Augusto Armondes, and Rubens Silva, “Real-Time Symbolic
Transcription and Interactive Transformation Using a Hexaphonic Nylon-
String Guitar,” Computer Music Journal, vol. 45, no. 4, pp. 20–39, 12 2021.
[Online]. Available: https://doi.org/10.1162/comj_a_00625

[64] Ricky Graham and Brian Bridges, “Gesture and Embodied Metaphor in Spa-
tial Music Performance Systems Design.” in Proceedings of the International
Conference on New Interfaces for Musical Expression, 2014, pp. 581–584.

[65] Amit Amit Shlomo Zoran, “Chameleon Guitar - a physical heart in a digital
instrument,” (Master thesis) MIT Media Lab, USA, 2009.

[66] “Elk Audio website,” https://www.elk.audio/, accessed: 2023-09-29.

[67] Pranay Dighe, Parul Agrawal, Harish Karnick, Siddartha Thota, and Bhiksha
Raj, “Scale independent raga identification using chromagram patterns and
swara based features,” in 2013 IEEE International Conference on Multimedia
and Expo Workshops (ICMEW), 2013, pp. 1–4.

[68] Sergio Freire and Lucas Nézio, “Study of the tremolo technique on the acoustic
guitar: Experimental setup and preliminary results on regularity,” in Proc. Int.
Conf. Sound and Music Computing, Stockholm, 2013, pp. 329–334.

[69] Sérgio Freire and Pedro Cambraia, “Analysis of musical textures played on the
guitar by means of real-time extraction of mid-level descriptors,” in 12th Inter-
national Conference on Sound and Music Computing. Proceedings... Maynooth:
Maynooth University, vol. 1, 2015, pp. 509–514.

[70] Miller Puckette, “The Patcher,” in Proceedings of the International Computer
Music Conference (ICMC). International Computer Music Association, 1988,
pp. 420–429.

[71] Otso Lähdeoja, Marcelo M Wanderley, and Joseph Malloch, “Instrument aug-
mentation using ancillary gestures for subtle sonic effects,” Proc. SMC, pp.
327–330, 2009.

184

https://doi.org/10.1162/comj_a_00625
https://www.elk.audio/

Bibliography

[72] Amit Zoran and Joseph A. Paradiso, “The chameleon guitar-guitar with a re-
placeable resonator,” Journal of New Music Research, vol. 40, no. 1, pp. 59–74,
2011.

[73] “Line6 website - Variax Modeling Guitars,” https://line6.com/
variax-modeling-guitars/, accessed: 2023-09-30.

[74] “Roland website - VG Stratocaster Guitar,” https://www.roland.com/
products/g-5/, accessed: 2023-09-30.

[75] Roy Vanegas, “The MIDI pick: Trigger serial data, samples, and MIDI from a
guitar pick,” in Proceedings of the 7th international conference on New inter-
faces for musical expression, 2007, pp. 330–332.

[76] Luca Turchet, Andrew McPherson, and Mathieu Barthet, “Co-design of a smart
cajón,” Journal of the Audio Engineering Society, vol. 66, no. 4, pp. 220–230,
2018.

[77] ——, “Real-time hit classification in a smart cajón,” Frontiers in ICT, vol. 5,
p. 16, 2018.

[78] Luca Turchet, “Smart mandolin: autobiographical design, implementation, use
cases, and lessons learned,” in Proceedings of the Audio Mostly 2018 on Sound
in Immersion and Emotion, 2018, pp. 1–7.

[79] David Wessel and Matthew Wright, “Problems and prospects for intimate mu-
sical control of computers,” Computer music journal, vol. 26, no. 3, pp. 11–22,
2002.

[80] Domenico Stefani and Luca Turchet, “On the Challenges of Embedded Real-
Time Music Information Retrieval,” in Proceedings of the 25-th International
Conference on Digital Audio Effects (DAFx20in22), vol. 3, Sep. 2022, pp. 177–
184.

[81] Claude Cadoz and Marcelo M Wanderley, “Gesture-music,” in Trends in Ges-
tural Control of Music. IRCAM, 2000, pp. 71—-94.

185

https://line6.com/variax-modeling-guitars/
https://line6.com/variax-modeling-guitars/
https://www.roland.com/products/g-5/
https://www.roland.com/products/g-5/

Bibliography

[82] Vincent Lostanlen, Joakim Andén, and Mathieu Lagrange, “Extended playing
techniques: the next milestone in musical instrument recognition,” in Proceed-
ings of the 5th International Conference on digital libraries for musicology, 2018,
pp. 1–10.

[83] Michel Bernays and Caroline Traube, “Expressive production of piano tim-
bre: touch and playing techniques for timbre control in piano performance,” in
Proceedings of the 10th Sound and Music Computing Conference (SMC2013).
KTH Royal Institute of Technology Stockholm, Sweden, 2013, pp. 341–346.

[84] Mauricio Alves Loureiro, Hugo Bastos de Paula, and Hani C Yehia, “Timbre
classification of a single musical instrument.” in ISMIR. Barcelona, 2004.

[85] Diana Young, “Classification of common violin bowing techniques using gesture
data from a playable measurement system.” in NIME, 2008, pp. 44–48.

[86] Luwei Yang, Elaine Chew, and Sayid-Khalid Rajab, “Cross-cultural compar-
isons of experssivity in recorded erhu and violin music: Performer vibrato
styles,” in the 4th International Workshop on Folk Music Analysis, 2014.

[87] Tan Hakan Özaslan, Enric Guaus, Eric Palacios, and Josep Lluis Arcos, “Attack
based articulation analysis of nylon string guitar,” in Proceedings of the 7th In-
ternational Symposium on Computer Music Modeling and Retrieval (CMMR),
2010.

[88] Loïc Reboursière, Otso Lähdeoja, Ricardo Chesini Bose, Thomas Drugman,
Stéphane Dupont, Cécile Picard-Limpens, and Nicolas Riche, “Guitar as Con-
troller,” Numediart Quartely Progress Scientific Report, vol. 4(3), no. 3, 2011.

[89] Otso Lähdeoja, Loïc Reboursière, Thomas Drugman, Stéphane Dupont, Cécile
Picard-Limpens, and Nicolas Riche, “Détection Des Techniques De Jeu De La
Guitare,” Journées d’Informatique Musicale, 2012.

[90] Raphael Foulon, Pierre Roy, and François Pachet, “Automatic classification of
guitar playing modes,” in International Symposium on Computer Music Multi-
disciplinary Research. Springer, 2013, pp. 58–71.

186

Bibliography

[91] Jakob Abeßer, Hanna Lukashevich, and Gerald Schuller, “Feature-based extrac-
tion of plucking and expression styles of the electric bass guitar,” in 2010 IEEE
International Conference on Acoustics, Speech and Signal Processing. IEEE,
2010, pp. 2290–2293.

[92] Caroline Traube and Philippe Depalle, “Extraction of the excitation point loca-
tion on a string using weighted least-square estimation of a comb filter delay,”
in Proceedings of the 6th International Conference on Digital Audio Effects
(DAFx-03), 2003.

[93] Henri Penttinen and Vesa Välimäki, “A time-domain approach to estimating the
plucking point of guitar tones obtained with an under-saddle pickup,” Applied
Acoustics, vol. 65, no. 12, pp. 1207–1220, 2004.

[94] Christian Kehling, Jakob Abeßer, Christian Dittmar, and Gerald Schuller, “Au-
tomatic Tablature Transcription of Electric Guitar Recordings by Estimation
of Score-and Instrument-Related Parameters,” in DAFx, 2014, pp. 219–226.

[95] Ana M. Barbancho, Anssi Klapuri, Lorenzo J. Tardon, and Isabel Barbancho,
“Automatic transcription of guitar chords and fingering from audio,” IEEE
Transactions on Audio, Speech, and Language Processing, vol. 20, no. 3, pp.
915–921, 2012.

[96] Isabel Barbancho, George Tzanetakis, Ana M. Barbancho, and Lorenzo J.
Tardón, “Discrimination Between Ascending/Descending Pitch Arpeggios,”
IEEE/ACM Transactions on Audio, Speech, and Language Processing, vol. 26,
no. 11, pp. 2194–2203, 2018.

[97] Yuan-Ping Chen, Li Su, and Yi-Hsuan Yang, “Electric Guitar Playing Tech-
nique Detection in Real-World Recording Based on F0 Sequence Pattern Recog-
nition,” in ISMIR, 2015, pp. 708–714.

[98] Li Su, Li-fan Yu, and Yi-hsuan Yang, “Sparse Cepstral and Phase Codes for
Guitar Playing Technique Classification,” in Proceedings of the 15th Interna-
tional Society for Music Information Retrieval Conference (ISMIR), 2014, pp.
9–14.

187

Bibliography

[99] Ting-Wei Su, Yuan-Ping Chen, Li Su, and Yi-Hsuan Yang, “TENT: Technique-
Embedded Note Tracking for Real-World Guitar Solo Recordings,” Transac-
tions of the International Society for Music Information Retrieval, vol. 2, no. 1,
pp. 15–28, 2019.

[100] Andrea Martelloni, Andrew McPherson, and Mathieu Barthet, “Percussive
Fingerstyle Guitar through the Lens of NIME: an Interview Study,”
in Proceedings of the International Conference on New Interfaces for
Musical Expression (NIME), Jun. 2020, pp. 440–445. [Online]. Available:
https://doi.org/10.5281/zenodo.4813463

[101] Ivan Franco and Marcelo M. Wanderley, “Prynth: A framework for self-
contained digital music instruments,” in In Proceedings of the 12th Interna-
tional Symposium on Computer Music Multidisciplinary Research (CMMR),
2016, pp. 357–370.

[102] Edgar Berdahl and Wendy Ju, “Satellite CCRMA: A musical interaction and
sound synthesis platform,” in Proceedings of the Conference on New Interfaces
for Musical Expression (NIME), 2011, pp. 173–178.

[103] Andrew McPherson, “Bela: An embedded platform for low-latency feedback
control of sound,” The Journal of the Acoustical Society of America, vol.
141, no. 5 Supplement, pp. 3618–3618, May 2017. [Online]. Available:
https://doi.org/10.1121/1.4987761

[104] Alec Wright, Eero-Pekka Damskägg, Lauri Juvela, and Vesa Välimäki, “Real-
Time Guitar Amplifier Emulation with Deep Learning,” Applied Sciences,
vol. 10, no. 3, 2020. [Online]. Available: https://www.mdpi.com/2076-3417/
10/3/766

[105] “TensorFlow lite - website,” https://www.tensorflow.org/lite, accessed: 2023-
09-30.

[106] “TorchScript - website,” https://pytorch.org/docs/stable/jit.html, accessed:
2023-09-30.

[107] “ONNX RUntime - website,” https://onnxruntime.ai/, accessed: 2023-09-30.

188

https://doi.org/10.5281/zenodo.4813463
https://doi.org/10.1121/1.4987761
https://www.mdpi.com/2076-3417/10/3/766
https://www.mdpi.com/2076-3417/10/3/766
https://www.tensorflow.org/lite
https://pytorch.org/docs/stable/jit.html
https://onnxruntime.ai/

Bibliography

[108] Jatin Chowdhury, “RTNeural: Fast Neural Inferencing for Real-Time Systems,”
arXiv preprint arXiv:2106.03037, 2021.

[109] Domenico Stefani, Simone Peroni, and Luca Turchet, “A Comparison of Deep
Learning Inference Engines for Embedded Real-Time Audio Classification,”
in Proceedings of the 25-th International Conference on Digital Audio Effects
(DAFx20in22), vol. 3, Sept. 2022, pp. 256–263.

[110] Sebastian Böck and Markus Schedl, “Enhanced beat tracking with context-
aware neural networks,” in Proceedings of the 14th International Conference on
Digital Audio Effects (DAFx-11), 2011, pp. 135–139.

[111] Juan Pablo Bello, Laurent Daudet, Samer Abdallah, Chris Duxbury, Mike
Davies, and Mark B Sandler, “A tutorial on onset detection in music signals,”
IEEE Transactions on Speech and Audio Processing, vol. 13, pp. 1035–1047,
2005.

[112] Siddharth Sigtia, Emmanouil Benetos, and Simon Dixon, “An End-to-End Neu-
ral Network for Polyphonic Piano Music Transcription,” IEEE/ACM Transac-
tions on Audio, Speech, and Language Processing, vol. 24, pp. 927–939, 2016.

[113] George Tzanetakis and Perry Cook, “Musical genre classification of audio sig-
nals,” IEEE Transactions on Speech and Audio Processing, vol. 10, no. 5, pp.
293–302, 2002.

[114] Edgar Berdahl, “How to make embedded acoustic instruments,” in Proceedings
of the International Conference on New Interfaces for Musical Expression
(NIME). London, United Kingdom: Goldsmiths, University of London, Jun.
2014, pp. 140–143. [Online]. Available: http://www.nime.org/proceedings/
2014/nime2014_551.pdf

[115] Giulio Moro, Astrid Bin, Robert H Jack, Christian Heinrichs, and Andrew
McPherson, “Making high-performance embedded instruments with bela and
pure data,” in Proceedings of the International Conference on Live Interfaces
(ICLI). University of Sussex, 2016.

189

http://www.nime.org/proceedings/2014/nime2014_551.pdf
http://www.nime.org/proceedings/2014/nime2014_551.pdf

Bibliography

[116] Andrew McPherson, Robert Jack, and Giulio Moro, “Action-Sound Latency:
Are Our Tools Fast Enough?” in Proceedings of the International Conference on
New Interfaces for Musical Expression (NIME). Brisbane, Australia: Queens-
land Conservatorium Griffith University, 2016, pp. 20–25.

[117] Jurgen Vandendriessche, Nick Wouters, Bruno da Silva, Mimoun Lamrini,
Mohamed Yassin Chkouri, and Abdellah Touhafi, “Environmental Sound
Recognition on Embedded Systems: From FPGAs to TPUs,” Electronics,
vol. 10, no. 21, 2021. [Online]. Available: https://www.mdpi.com/2079-9292/
10/21/2622

[118] Romain Michon, Yann Orlarey, Stéphane Letz, and Dominique Fober, “Real
Time Audio Digital Signal Processing With Faust and the Teensy,” in Sound
and Music Computing Conference (SMC-19), Malaga, Spain, May 2019.
[Online]. Available: https://hal.archives-ouvertes.fr/hal-03153709

[119] Tanguy Risset, Romain Michon, Yann Orlarey, Stéphane Letz, Gero
Müller, and Adeyemi Gbadamosi, “Faust2FPGA for Ultra-Low Audio
Latency: Preliminary work in the Syfala project,” in Second International
Faust Conference, Paris, France, Dec. 2020, pp. 1–9. [Online]. Available:
https://hal.inria.fr/hal-03116958

[120] Bhuwan Bhattarai and Joonwhoan Lee, “Automatic music mood detection
using transfer learning and multilayer perceptron,” The International Journal
of Fuzzy Logic and Intelligent Systems, vol. 19, no. 2, pp. 88–96, Jun 2019.
[Online]. Available: https://doi.org/10.5391/IJFIS.2019.19.2.88

[121] Yang Yu, Sen Luo, Shenglan Liu, Hong Qiao, Yang Liu, and Lin Feng, “Deep
attention based music genre classification,” Neurocomputing, vol. 372, pp. 84–
91, 1 2020.

[122] Florian Eyben, Sebastian Böck, Björn Schuller, and Alex Graves, “Universal
onset detection with bidirectional long-short term memory neural networks,”
in Proceedings of the 11th International Society for Music Information Retrieval
Conference (ISMIR), Utrecht, The Netherlands, 2010, pp. 589–594.

190

https://www.mdpi.com/2079-9292/10/21/2622
https://www.mdpi.com/2079-9292/10/21/2622
https://hal.archives-ouvertes.fr/hal-03153709
https://hal.inria.fr/hal-03116958
https://doi.org/10.5391/IJFIS.2019.19.2.88

Bibliography

[123] Dan Stowell and Mark Plumbley, “Adaptive whitening for improved real-time
audio onset detection,” in Proceedings of the 2007 International Computer Mu-
sic Conference, ICMC 2007, 2007, pp. 312–319.

[124] Sebastian Böck, Florian Krebs, and Markus Schedl, “Evaluating the Online
Capabilities of Onset Detection Methods.” in Proc. of the 13th Int. Society for
Music Information Retrieval Conf. Porto, Portugal: ISMIR, Oct. 2012, pp.
49–54. [Online]. Available: https://doi.org/10.5281/zenodo.1416036

[125] Sebastian Böck, Andreas Arzt, Florian Krebs, and Markus Schedl, “Online real-
time onset detection with recurrent neural networks,” in Proceedings of the 15th
International Conference on Digital Audio Effects (DAFx-12), York, UK, 2012.

[126] Luca Vignati, Stefano Zambon, and Luca Turchet, “A comparison of real-time
Linux-based architectures for embedded musical applications,” Journal of the
Audio Engineering Society, vol. 70, no. 1/2, pp. 83–93, 2022.

[127] Ross Bencina, “Interfacing real-time audio and file I/O,” in Proceedings of the
of the Australasian Computer Music Conference (ACMC), 2014, pp. 21–28.

[128] Paul M Brossier, “Automatic annotation of musical audio for interactive appli-
cations,” Ph.D. dissertation, Centre for Digital Music, Queen Mary University
of London, London, UK, 2006.

[129] Siddharth Sigtia, Emmanouil Benetos, and Simon Dixon, “An End-to-End Neu-
ral Network for Polyphonic Piano Music Transcription,” IEEE/ACM Transac-
tions on Audio, Speech, and Language Processing, vol. 24, no. 5, pp. 927–939,
2016.

[130] Luca Turchet, Johan Pauwels, Carlo Fischione, and György Fazekas, “Cloud-
Smart Musical Instrument Interactions: Querying a Large Music Collection
with a Smart Guitar,” ACM Transactions on the Internet Things, vol. 1, no. 3,
jun 2020. [Online]. Available: https://doi.org/10.1145/3377881

[131] Clemens Wegener, Sebastian Stang, and Max Neupert, “FPGA-accelerated real-
time audio in pure data,” in Proceedings of the International Conference in
Sound and Music Computing, SMC-22, 2022.

191

https://doi.org/10.5281/zenodo.1416036
https://doi.org/10.1145/3377881

Bibliography

[132] Domenico Stefani and Luca Turchet, “Demo of the TimbreID-VST Plugin for
Embedded Real-Time Classification of Individual Musical Instruments Tim-
bres,” in Proceedings of the 27th Conference of Open Innovations Association
(FRUCT), vol. 2, 2020, pp. 412–413.

[133] Joseph Turian, Jordie Shier, Humair Raj Khan, Bhiksha Raj, Björn W Schuller,
Christian J Steinmetz, Colin Malloy, George Tzanetakis, Gissel Velarde, Kirk
McNally et al., “Hear 2021: Holistic evaluation of audio representations,” arXiv
preprint arXiv:2203.03022, 2022.

[134] Siddharth Sigtia and Simon Dixon, “Improved music feature learning with deep
neural networks,” ICASSP, IEEE Int. Conf. on Acoustics, Speech and Signal
Processing - Proceedings, pp. 6959–6963, 2014.

[135] Domenico Stefani and Luca Turchet, “Bio-Inspired Optimization of Parametric
Onset Detectors,” in Proceedings of the 24th International Conference on Digital
Audio Effects (DAFx20in21), vol. 2, Sept. 2021, pp. 268–275.

[136] Luca Turchet, A. McPherson, and M. Barthet, “Real-time hit classification in
a Smart Cajón,” Frontiers in ICT, vol. 5, no. 16, 2018. [Online]. Available:
https://doi.org/10.3389/fict.2018.00016

[137] Jan Schlüter and Sebastian Böck, “Musical onset detection with convolutional
neural networks,” in Proceedings of the 6th international workshop on machine
learning and music (MML), Prague, Czech Republic, 2013, pp. 79–82.

[138] Axel Roebel, Céline Jacques, and Achille Aknin, “MIREX 2018: Training CNN
onset detectors with artificially augmented datasets,” accompanying abstract
for two submissions to MIREX2018-Audio Onset Detection (AR3, AR4),
https://www.music-ir.org/mirex/abstracts/2018/AR4.pdf.

[139] Luca Turchet, “Hard real time onset detection for percussive sounds,” in Pro-
ceedings of the 21st International Conference on Digital Audio Effects (DAFx-
18), 2018, pp. 349–356.

[140] Paul M. Brossier, “Aubio, a library for audio labelling,” accessed September 23,
2023, http://aubio.piem.org.

192

https://doi.org/10.3389/fict.2018.00016
https://www.music-ir.org/mirex/abstracts/2018/AR4.pdf
http://aubio.piem.org

Bibliography

[141] Leonardo Gabrielli, Francesco Piazza, and Stefano Squartini, “Adaptive linear
prediction filtering in dwt domain for real-time musical onset detection,”
EURASIP Journal on Advances in Signal Processing, vol. 2011, pp. 1–10,
2011. [Online]. Available: https://doi.org/10.1155/2011/650204

[142] Paul Masri, “Computer modeling of Sound for Transformation and Synthesis
of Musical Signal,” Ph.D. dissertation, University of Bristol, UK, 1996.

[143] Chris Duxbury, Juan Pablo Bello, Mike Davies, and Mark Sandler, “Complex
domain onset detection for musical signals,” in Proceedings of the 6th Interna-
tional Conference on Digital Audio Effects (DAFx03), vol. 1, Sep. 2003, pp.
6–9.

[144] Juan Pablo Bello and Mark Sandler, “Phase-based note onset detection for
music signals,” 2003 IEEE International Conference on Acoustics, Speech, and
Signal Processing, 2003. Proceedings. (ICASSP ’03)., vol. 5, pp. V–441, 2003.

[145] Jonathan Foote and Shingo Uchihashi, “The beat spectrum: a new approach
to rhythm analysis,” IEEE International Conference on Multimedia and Expo
(ICME), pp. 881–884, 2001.

[146] Stephen Hainsworth and Malcolm D Macleod, “Onset Detection in Musical
Audio Signals,” in Proceedings of the International Computer Music Conference
(ICMC), 2003.

[147] Simon Dixon, “Onset detection revisited,” in Proceedings of the 9th Interna-
tional Conference on Digital Audio Effects (DAFx-06), vol. 120, 2006, pp. 133–
137.

[148] Dmitry Bogdanov, Nicolas Wack, Emilia Gómez Gutiérrez, Sankalp Gulati,
Herrera Boyer, Oscar Mayor, Gerard Roma Trepat, Justin Salamon,
José Ricardo Zapata González, and Xavier Serra, “ESSENTIA: an Audio
Analysis Library for Music Information Retrieval,” in International Society
for Music Information Retrieval Conference (ISMIR’13), Curitiba, Brazil,
04/11/2013 2013, pp. 493–498. [Online]. Available: http://hdl.handle.net/
10230/32252

193

https://doi.org/10.1155/2011/650204
http://hdl.handle.net/10230/32252
http://hdl.handle.net/10230/32252

Bibliography

[149] Brian McFee, Colin Raffel, Dawen Liang, Daniel P Ellis, Matt McVicar, Eric
Battenberg, and Oriol Nieto, “librosa: Audio and music signal analysis in
python,” in Proceedings of the 14th Python in Science conference (SciPy), vol. 8,
2015, pp. 18–25.

[150] Sebastian Böck, Filip Korzeniowski, Jan Schlüter, Florian Krebs, and Gerhard
Widmer, “madmom: A New Python Audio and Music Signal Processing Li-
brary,” Proceedings of the 24th ACM International Conference on Multimedia,
2016.

[151] Sebastian Böck and Gerhard Widmer, “Maximum filter vibrato suppression for
onset detection,” in Proceedings of the 16th International Conference on Digital
Audio Effects (DAFx-13). Maynooth, Ireland, vol. 7, 2013.

[152] Kamer Ali Yuksel, Aytul Ercil, and Batuhan Bozkurt, “Digital sound synthe-
sis via parallel evolutionary optimization,” in 2012 20th Signal Processing and
Communications Applications Conference (SIU), 2012, pp. 1–4.

[153] Jônatas Manzolli, Adolfo Maia Jr, Jose Fornari, and Furio Damiani, “The
Evolutionary Sound Synthesis Method,” in Proceedings of the 9th ACM
International Conference on Multimedia, ser. MULTIMEDIA ’01. New York,
NY, USA: Association for Computing Machinery, 2001, pp. 585–587. [Online].
Available: https://doi.org/10.1145/500141.500248

[154] Ricardo A Garcia, “Growing sound synthesizers using evolutionary methods,” in
Proceedings of the Workshop on Artificial Life Models for Musical Applications
(ALMMA), 2001, pp. 99–107.

[155] Colin G Johnson, “Exploring sound-space with interactive genetic algorithms,”
Leonardo, vol. 36, no. 1, pp. 51–54, 2003.

[156] Artemis Moroni, Jônatas Manzolli, Fernando Von Zuben, and Ricardo Gud-
win, “Vox populi: An interactive evolutionary system for algorithmic music
composition,” Leonardo Music Journal, pp. 49–54, 2000.

[157] Marco Scirea, Julian Togelius, Peter Eklund, and Sebastian Risi, “Metacom-
pose: A compositional evolutionary music composer,” in International Confer-

194

https://doi.org/10.1145/500141.500248

Bibliography

ence on Computational Intelligence in Music, Sound, Art and Design. Springer,
2016, pp. 202–217.

[158] Viriato M Marques, Cecília Reis, and JA Tenreiro Machado, “Interactive evo-
lutionary computation in music,” in 2010 IEEE International Conference on
Systems, Man and Cybernetics. IEEE, 2010, pp. 3501–3507.

[159] Nao Tokui and Hitoshi Iba, “Music composition with interactive evolutionary
computation,” in Proceedings of the 3rd International Conference on Generative
Art, vol. 17, 2000, pp. 215–226.

[160] Igor Vatolkin, Mike Preuß, Günter Rudolph, Markus Eichhoff, and Claus Weihs,
“Multi-objective evolutionary feature selection for instrument recognition in
polyphonic audio mixtures,” Soft Computing, vol. 16, no. 12, pp. 2027–2047,
2012.

[161] Paul. Faragó, C. Faragó, Sorin Hintea, and M. Cîrlugea, “An Evolutionary
Multi-objective Optimization Approach to Design the Sound Processor of a
Hearing Aid,” in International Conference on Advancements of Medicine and
Health Care through Technology. Springer International Publishing, 2014, pp.
181–186.

[162] Giovanni Pepe, Leonardo Gabrielli, Stefano Squartini, and Luca Cattani, “Evo-
lutionary tuning of filters coefficients for binaural audio equalization,” Applied
Acoustics, vol. 163, p. 107204, 2020.

[163] Usman Rashid, Imran Khan Niazi, Nada Signal, Dario Farina, and Denise
Taylor, “Optimal automatic detection of muscle activation intervals,” Journal
of Electromyography and Kinesiology, vol. 48, pp. 103–111, 2019.

[164] Mateusz Magda, Antonio Martinez-Alvarez, and Sergio Cuenca-Asensi,
“MOOGA Parameter Optimization for Onset Detection in EMG Signals,” in
New Trends in Image Analysis and Processing – ICIAP 2017. Springer Inter-
national Publishing, 2017, pp. 171–180.

[165] Aaron Garrett, “inspyred: Bio-inspired Algorithms in Python,”
https://pypi.python.org/pypi/inspyred (accessed March 23, 2021).

195

https://pypi.python.org/pypi/inspyred

Bibliography

[166] Chris Cannam, Christian Landone, and Mark Sandler, “Sonic Visualiser: An
Open Source Application for Viewing, Analysing, and Annotating Music Audio
Files,” in Proceedings of the ACM Multimedia 2010 International Conference,
Firenze, Italy, October 2010, pp. 1467–1468.

[167] Konstantinos P Ferentinos, Konstantinos G Arvanitis, and Nick Sigrimis,
“Heuristic optimization methods for motion planning of autonomous
agricultural vehicles,” Journal of Global Optimization, vol. 23, no. 2, pp. 155–
170, Jun 2002. [Online]. Available: https://doi.org/10.1023/A:1015527207828

[168] Enrique Alba, Christian Blum, Pedro Asasi, Coromoto Leon, and Juan Antonio
Gomez, Optimization techniques for solving complex problems. John Wiley &
Sons, 2009, vol. 76.

[169] Anne Brindle, “Genetic algorithms for function optimization,” Ph.D. disserta-
tion, University of Alberta, 1980.

[170] Zbigniew Michalewicz and Jarosław Arabas, “Genetic algorithms for the 0/1
knapsack problem,” in International Symposium on Methodologies for Intelli-
gent Systems. Springer, 1994, pp. 134–143.

[171] Kusum Deep and Manoj Thakur, “A new crossover operator for real coded
genetic algorithms,” Applied Mathematics and Computation, vol. 188, no. 1,
pp. 895–911, 2007.

[172] John W Tukey, Exploratory data analysis. Reading, Mass., 1977, vol. 2.

[173] Keunwoo Choi, George Fazekas, and Mark Sandler, “Automatic Tagging Using
Deep Convolutional Neural Networks,” in Proceedings of the 17th International
Society for Music Information Retrieval Conference (ISMIR), August 2016, pp.
805–811.

[174] Juan S Gómez, Jakob Abeßer, and Estefanía Cano, “Jazz Solo Instrument Clas-
sification with Convolutional Neural Networks, Source Separation, and Transfer
Learning,” in Proceedings of the 19th International Society for Music Informa-
tion Retrieval Conference, (ISMIR), 2018, pp. 577–584.

196

https://doi.org/10.1023/A:1015527207828

Bibliography

[175] Eduardo Meneses, Johnty Wang, Sergio Freire, and Marcelo Wanderley, “A
Comparison of Open-Source Linux Frameworks for an Augmented Musical
Instrument Implementation,” in Proceedings of the International Conference
on New Interfaces for Musical Expression, Marcelo Queiroz and Anna Xambó
Sedó, Eds. Porto Alegre, Brazil: UFRGS, Jun. 2019, pp. 222–227.

[176] Nicholas D. Lane, Sourav Bhattacharya, Akhil Mathur, Petko Georgiev, Clau-
dio Forlivesi, and Fahim Kawsar, “Squeezing Deep Learning into Mobile and
Embedded Devices,” IEEE Pervasive Computing, vol. 16, no. 3, pp. 82–88,
2017.

[177] Leonardo Gabrielli and Luca Turchet, “Towards a sustainable internet of
sounds,” in Proceedings of the 17th International Audio Mostly Conference, ser.
AM ’22. New York, NY, USA: Association for Computing Machinery, 2022,
p. 231–238. [Online]. Available: https://doi.org/10.1145/3561212.3561246

[178] Brian Whitman, Gary Flake, and Steve Lawrence, “Artist detection in mu-
sic with Minnowmatch,” in Neural Networks for Signal Processing XI: Pro-
ceedings of the 2001 IEEE Signal Processing Society Workshop (IEEE Cat.
No.01TH8584), 2001, pp. 559–568.

[179] Tim Jago, “The role of the jazz guitarist in adapting to the jazz trio, the jazz
quartet, and the jazz quintet,” Ph.D. dissertation, University of Miami, 2015.

[180] Domenico Stefani and Luca Turchet, “Demo: a Guide to Real-Time Embedded
Deep Learning Deployment for Elk Audio OS,” in International Symposium on
the Internet of Sounds (Accepted Demo), Oct. 2023.

[181] Jesse Engel, Lamtharn (Hanoi) Hantrakul, Chenjie Gu, and Adam
Roberts, “DDSP: Differentiable digital signal processing,” in International
Conference on Learning Representations, 2020. [Online]. Available: https:
//openreview.net/forum?id=B1x1ma4tDr

[182] Antoine Caillon and Philippe Esling, “RAVE: A variational autoencoder for
fast and high-quality neural audio synthesis,” CoRR, vol. abs/2111.05011,
2021. [Online]. Available: https://arxiv.org/abs/2111.05011

197

https://doi.org/10.1145/3561212.3561246
https://openreview.net/forum?id=B1x1ma4tDr
https://openreview.net/forum?id=B1x1ma4tDr
https://arxiv.org/abs/2111.05011

Bibliography

[183] Alec Wright, Eero-Pekka Damskägg, and Vesa Välimäki, “Real-time black-box
modelling with recurrent neural networks,” in 22nd International Conference
on digital audio effects (DAFx-19), 2019, pp. 1–8.

[184] Luca Turchet, Carlo Fischione, Georg Essl, Damián Keller, and Mathieu Bar-
thet, “Internet of Musical Things: Vision and Challenges,” IEEE Access, vol. 6,
pp. 61 994–62 017, 2018.

[185] Luca Turchet and Francesco Antoniazzi, “Semantic Web of Musical
Things: Achieving interoperability in the Internet of Musical Things,”
Journal of Web Semantics, vol. 75, p. 100758, 2023. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S1570826822000427

[186] Teresa Pelinski, Rodrigo Diaz, Adán L Benito Temprano, and Andrew McPher-
son, “Pipeline for recording datasets and running neural networks on the Bela
embedded hardware platform,” in Proceedings of the International Conference
on New Interfaces for Musical Expression, 2023.

[187] Keith Bloemer, “GuitarML-NeuralPi,” https://github.com/GuitarML/
NeuralPi, 2021.

[188] Weisong Shi, Jie Cao, Quan Zhang, Youhuizi Li, and Lanyu Xu, “Edge com-
puting: Vision and challenges,” IEEE Internet of Things Journal, vol. 3, no. 5,
pp. 637–646, 2016.

[189] Marco Comunità, Christian J. Steinmetz, Huy Phan, and Joshua D. Reiss,
“Modelling Black-Box Audio Effects with Time-Varying Feature Modulation,”
in ICASSP 2023 - 2023 IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP), 2023, pp. 1–5.

[190] Alec Wright and Vesa Välimäki, “Neural modeling of phaser and flanging ef-
fects,” Journal of the Audio Engineering Society, vol. 69, no. 7/8, pp. 517–529,
2021.

[191] William Brent, “A perceptually based onset detector for real-time
and offline audio parsing,” in Proceedings of the 2011 International
Computer Music Conference, ICMC 2011, Huddersfield, UK, July 31

198

https://www.sciencedirect.com/science/article/pii/S1570826822000427
https://github.com/GuitarML/NeuralPi
https://github.com/GuitarML/NeuralPi

Bibliography

- August 5, 2011. Michigan Publishing, 2011. [Online]. Available:
https://hdl.handle.net/2027/spo.bbp2372.2011.056

[192] Luca Turchet and Johan Pauwels, “Music emotion recognition: Intention of
composers-performers versus perception of musicians, non-musicians, and lis-
tening machines,” IEEE/ACM Transactions on Audio, Speech, and Language
Processing, vol. 30, pp. 305–316, 2022.

199

https://hdl.handle.net/2027/spo.bbp2372.2011.056

Bibliography

200

Appendix A

Additional details

A.1 Aubio onset methods

The list of onset functions in version 0.4.9 of Aubio and the relative descriptions
(from Aubio’s manual) are shown in Table A.1.

Table A.1: List of onset functions available in version 0.4.9 of Aubio, from Aubio’s
manual: https://aubio.org/manual/latest/cli.html#aubioonset.

aubioonset argument Description (Aubio’s manual)

default Default distance, currently hfc

energy Energy based distance: this function calculates the local
energy of the input spectral frame.

hfc

High-Frequency content: this method computes the High
Frequency Content (HFC) of the input spectral frame. The
resulting function is efficient at detecting percussive onsets
[142].

complex

Complex domain onset detection function: this function
uses information both in frequency and in phase to deter-
mine changes in the spectral content that might correspond
to musical onsets. It is best suited for complex signals such
as polyphonic recordings [143]

phase

Phase based onset detection function: this function uses
information both in frequency and in phase to determine
changes in the spectral content that might correspond to
musical onsets. It is best suited for complex signals such as
polyphonic recordings [144].

specdiff Spectral difference onset detection function [145]
kl Kulback-Liebler onset detection function [146]
mkl Modified Kulback-Liebler onset detection function [128]
specflux Spectral flux [147]

201

https://aubio.org/manual/latest/cli.html#aubioonset

A.1. Aubio onset methods

A.1.1 HFC Onset Detection Function

From [128]:

DH [n] =
N∑
k=1

k |Xk[n]|2 (A.1)

A.1.2 Complex Onset Detection Function

From [128]:

DC [n] =
N∑
k=0

∥∥∥X̂k[n]−Xk[n]
∥∥∥2

(A.2)

A.1.3 Phase Onset Detection Function

From [128]:

Dϕ[n] =
N∑
k=0

∣∣∣ϕ̂k[n]
∣∣∣ with ϕ̂k[n] = princarg

(
∂2ϕk[n]

∂n2

)
(A.3)

A.1.4 Spectral difference Onset Detection Function

From [128]:

Ds[n] =
N∑
k=0

∣∣|Xk[n]|2 − |Xk[n− 1]|2
∣∣ (A.4)

A.1.5 Kullback-Liebler distance Onset Detection Function

From [128]:

Dkl[n] =
N∑
k=0

|Xk[n]| log
|Xk[n]|

|Xk[n− 1]|
(A.5)

A.1.6 MKL Onset Detection Function

From [128]:

Dmkl[n] =
N∑
k=0

log

(
1 +

|Xk[n]|
|Xk[n− 1]|+ ϵ

)
, ϵ = 10−6 (A.6)

202

Appendix A. Additional details

A.1.7 Spectral Flux Onset Detection Function

From [147]:

SF (n) =

N
2
−1∑

k=−N
2

H(|X(n, k)| − |X(n− 1, k)|) (A.7)

Where H(x) = x+|x|
2

is the half-wave rectifier function.

A.2 Inspyred operations

A.2.1 Tournament Selection

“This function selects num_selected individuals from the population. It selects
each one by using random sampling without replacement to pull tournament_size
individuals and adds the best of the tournament as its selection. If tourna-
ment_size is greater than the population size, the population size is used instead
as the size of the tournament.
Optional keyword arguments in args:

• num_selected - the number of individuals to be selected (default 1)

• tournament_size - the tournament size (default 2)

” from https://pythonhosted.org/inspyred/reference.html#inspyred.ec.selectors.tournament_selection.

A.2.2 Arithmetic Crossover

“This function performs arithmetic crossover, which is similar to a generalized weighted
averaging of the candidate elements. The allele of each parent is weighted by the
ax_alpha keyword argument, and the allele of the complement parent is weighted by
1 - ax_alpha. This averaging is only done on the alleles listed in the ax_points
keyword argument. If this argument is None, then all alleles are used. This means
that if this function is used with all default values, then offspring are simple averages
of their parents. This function also makes use of the bounder function as specified in
the EC’s evolve method.
Optional keyword arguments in args:

203

https://pythonhosted.org/inspyred/reference.html#inspyred.ec.selectors.tournament_selection

A.2. Inspyred operations

• crossover_rate - the rate at which crossover is performed (default 1.0)

• ax_alpha - the weight for the averaging (default 0.5)

• ax_points - a list of points specifying the alleles to recombine (default None)

” from https://pythonhosted.org/inspyred/reference.html#inspyred.ec.variators.arithmetic_crossover.

A.2.3 Laplace Crossover

“This function performs Laplace crossover, following the implementation specified
in [171]. This function also makes use of the bounder function as specified in the
EC’s evolve method.
Optional keyword arguments in args:

• crossover_rate - the rate at which crossover is performed (default 1.0)

• lx_location - the location parameter (default 0)

• lx_scale - the scale parameter (default 0.5)

In some sense, the lx_location and lx_scale parameters can be thought of as
analogs in a Laplace distribution to the mean and standard deviation of a Gaussian
distribution. If lx_scale is near zero, offspring will be produced near the parents.
If lx_scale is farther from zero, offspring will be produced far from the parents.”

from https://pythonhosted.org/inspyred/reference.html#inspyred.ec.variators.laplace_crossover

A.2.4 Generational Replacement

“This function performs random replacement, which means that the offspring replace
random members of the population, keeping the population size constant. Weak
elitism may also be specified through the num_elites keyword argument in args. If
this is used, the best num_elites individuals in the current population are allowed
to survive if they are better than the worst num_elites offspring.
Optional keyword arguments in args:

• num_elites - number of elites to consider (default 0)

” from https://pythonhosted.org/inspyred/reference.html#inspyred.ec.replacers.generational_replacement

204

https://pythonhosted.org/inspyred/reference.html#inspyred.ec.variators.arithmetic_crossover
https://pythonhosted.org/inspyred/reference.html#inspyred.ec.variators.laplace_crossover
https://pythonhosted.org/inspyred/reference.html#inspyred.ec.replacers.generational_replacement

Appendix A. Additional details

A.3 Elk Audio OS - Deep Learning Guide

Figure A.1 presents the shell commands required to properly cross-compile Tensor-
Flow Lite 2.11.0 for Elk Audio OS.

git clone https://github.com/tensorflow/tensorflow.git
cd tensorflow
git checkout v2.11.0
mkdir -p build-aarch64 \&& cd build-aarch64

sed -i ’s/GIT_TAG v2.0.6/GIT_TAG v2.0.8 #https:\/\/github.com\/
tensorflow\/tensorflow\/issues\/57617/g’ \
../tensorflow/tensorflow/lite/tools/cmake/modules/flatbuffers.cmake

unset LD_LIBRARY_PATH
source /opt/elk/0.11.0/environment-setup-cortexa72-elk-linux

cmake ../tensorflow/tensorflow/lite -DTFLITE_ENABLE_XNNPACK=OFF -
DCMAKE_TOOLCHAIN_FILE=../toolchain.cmake

export CXXFLAGS="-O3 -pipe -ffast-math -feliminate-unused-debug-types -
funroll-loops"

AR=aarch64-elk-linux-ar make -j$(nproc) CONFIG=Release CFLAGS="-Wno-
psabi" \
TARGET_ARCH="-mcpu=cortex-a72 -mtune=cortex-a72"

Figure A.1: Set of Linux shell commands required to properly download the Ten-
sorFlow source code for version 2.11.0 and cross-compile TensorFlow Lite for Elk
Audio OS and the Raspberry Pi4. The sed command represents an example of devi-
ation from the theoretical cross-compilation procedure mentioned in Section 7.4.2,
as it is required to fix a compilation bug. It does so by changing the version
of the sub-dependency Flatbuffers to include from 2.0.6 to 2.0.8. Additionally,
the toolchain.cmake provided in the project’s repository sets the value of the
CMAKE_SYSTEM_PROCESSOR variable to aarch64 to address a bug with the sub-
dependencies Abseil and Cpuinfo.

205

	List of Tables
	List of Figures
	Acronyms
	Introduction
	Motivation and aim
	Outcomes
	Publications
	Submitted Articles
	Demos and Talks
	Open-Source Software and Data
	Articles in progress

	Thesis Structure

	Background and State Of The Art
	Terminology
	Latency
	Soft and Hard Real-time

	Guitar Augmentations and Smart Musical Instruments
	Expressive guitar playing technique recognition
	Technology for real-time embedded audio deep learning
	Embedded Audio Platforms
	Deep learning Inference Engines for real-time Audio

	Summary

	Challenges of Embedded Real-time Music Information Retrieval
	Introduction
	Challenge 1: Availability of causal information only
	Potential solutions

	Challenge 2: Tradeoff between accuracy and latency
	Potential solutions

	Challenge 3: Processing deadlines and real-time-safe programming
	Potential solutions

	Challenge 4: Embedded hardware and software limitations
	Potential solutions

	Expressive Guitar Technique Classifier
	Classification tasks
	Dataset
	Classification Pipeline
	Results and Discussion

	Summary

	Bio-inspired Optimization of Parametric Onset Detectors
	Introduction
	Background
	The Aubio library
	Evolutionary Computation

	Proposed method
	Dataset Preparation
	Fitness Function
	Parameter Separation
	Evolutionary optimization for single-objective
	Pareto Front Computation
	Solution Selection

	Evaluation and discussion
	Input data
	Evaluation algorithm
	Onset detector parameters
	Single-objective evolutionary optimization step
	Multi-Objective Optimization
	Choosing a solution

	Summary

	Comparison of Deep Learning Inference Engines for Embedded Real-time Audio Classification
	Introduction
	Background
	Methodology
	Inference Engines
	Task
	Models
	Metrics

	Results and discussion
	Real-time safety
	Execution time
	Computational resources
	Model footprint
	Model-independent metrics
	Comparison Results and Key Takeaways

	Summary

	Embedded Real-Time Expressive Guitar Technique Recognition
	Introduction
	Experimental Setup and Motivation
	Data
	Hardware and embedded implementation
	Software
	Experiment 1: Accuracy and latency
	Experiment 2: Generalization and Guitar/Player effect
	Experiment 3: Specialization and Guitarist's Touch

	Results and Discussion
	Experiment 1: Accuracy and latency
	Experiment 2: Generalization and Guitar/Player effect
	Experiment 3: Specialization and Guitarist's Touch

	Summary

	Real-Time Embedded Deep Learning on Elk Audio OS
	Introduction
	Background
	Tools
	JUCE and VST
	Elk Audio OS
	Choice of Inference Engine
	Project Repository

	Deployment Procedure
	Project creation
	Cross-compilation for Elk Audio OS
	Elk Audio OS on the Raspberry
	DAW configuration: Sushi
	Diagnostic tools

	Considerations on real-time inference
	Other Application and work in progress
	Summary

	Conclusions
	Challenges of Embedded Real-time Music Information Retrieval
	Bio-inspired Optimization of Parametric Onset Detectors
	Comparison of Deep Learning Inference Engines for Embedded Real-time Audio Classification
	Embedded Real-Time Expressive Guitar Technique Recognition
	Real-Time Embedded Deep Learning on Elk Audio OS
	Concluding Remarks

	Bibliography
	Additional details
	Aubio onset methods
	HFC Onset Detection Function
	Complex Onset Detection Function
	Phase Onset Detection Function
	Spectral difference Onset Detection Function
	Kullback-Liebler distance Onset Detection Function
	MKL Onset Detection Function
	Spectral Flux Onset Detection Function

	Inspyred operations
	Tournament Selection
	Arithmetic Crossover
	Laplace Crossover
	Generational Replacement

	Elk Audio OS - Deep Learning Guide

